India's largest processor of fluoropolymers

Lined Piping Systems | Lined Valves | Bellows Hoses | Sight Flow Indicators | Special Lined Products

TEFLON® LICENSING PROCESSOR FOR INDIA

Teflon[•]

TEFLON[®] and TEFLON[®] clamond brand logo are registered trademarks of The Chemours Company PC, LLC used under license by Horizon Polymer Engineering Pvt. Ltd.

Horizon Poly	mer - Branch Offices
REGD. OFFICE & FACTORY:-	Mr. Corord Dinto, Drasidant
Horizon Polymer Engineering Pvt. Ltd C-1 B, 1650 & 1618 GIDC, Chhatral, Dist. Gandhinagar ,Mehsana, - 382 729 Gujarat.	Mr. Gerard Pinto, President Tel : 91 2764 233622 - 24(3 LINES) Cell : 91 93270 07883 Email : vp@horizonpolymers.com
HEAD OFFICE - MUMBAI:-	Mr. Sanjay Shitole -Vice President
Horizon Polymer Engineering Pvt. Ltd 204, Sumer Kendra, Pandurang Bhudhkar Marg, Worli Mumbai – 400 018 Maharashtra.	Tel : 022 2496 503 -36 (6 LINES) Fax : 91 22 2496 1076 Cell : 91 93 2408 5619 Email : sshitole@hs.co.in : hpelsales@hs.co.in Mr. Ranjan Uppan, General Manager
	Cell : 91 93241 18666 Email : ruppan@hs.co.in
VADODARDA:- Horizon Polymer Engineering Pvt. Ltd. 5, Shreehari Apartment, 13, Anand Society, Alkapuri, Vadodara – 390 005 Gujarat.	Mr. Roy Philip, Manager - General Manager Tel : 91 265 234 0834 Tel/Fax : 91 265 233 8319 Cell : 91 93762 38848 E Mail : horizon@hsgroupvod.com
NEW DELHI:-	
Horizon Polymer Engineering Pvt. Ltd. B2/73C, 2nd Floor, Safdarjung Enclave New Delhi – 110029	Mr. RajibChakrabarty, Regional Manager Tel : 91 (11) 26105473 / 26163754 Cell : 91 93501 86133 E Mail : rajib.horizon@hsgroupdelhi.com
CHENNAI:- Horizon Polymer Engineering Pvt. Ltd Unit – 29, Block – 2 Electronics Complex, Guindy Chennai – 600 032 Tamil Nadu KOLKATA:-	Mr. S. Karthikeyan - Regional Manager Tel : 91 44 22501403 / 22501404. Fax : 91 44 22500402. Cell : 91 93807 14500 E Mail : skarthikeyan@hsgroupchennai.com Mr. ShrobanLaha,- Asst Manager - Sales
Horizon Polymer Engineering Pvt. Ltd 31 B, Lake Place Kolkata – 700 029 West Bengal	Tel : 91 33 24669419 / 24669420 Fax : 91 33 24669418 Cell : 91 93397 92619 Email : shroban@hsgroupcal.com
OUR OTHER MA	NUFACTURING FACILITIES
HYDERABAD:- Horizon Polymer Engineering Pvt. Ltd 4/B Survey No,176, Phase 3, Cheralapally, IDA Park Hyderabad – 500 051 Telangana	Mr. D V G Krishnamurthy-General Manager Tel : 91 40 32216813 Cell : 91 9390302255 Email : krishnamurthy@hsgrouphyd.com
O O HORIZON WORKS :- C1 -B, 1650/1618, GIDC	MER ENGINEERING PVT LTD INDL. ESTATE, CHHATRAL, DIST. GANDHINAGAR (N.G) - 382 729 RA,PANDURANG BHUDHKAR MARG, WORLI, MUMBAI-400 018. INDIA

HORIZON POLYMER ENGINEERING PVT LTD

To solve your corrosion problem – You just have one choice

In 1987-88 Horizon Polymer commenced its manufacturing activities in Chhatral- Gujarat to process various grades of Fluoropolymer and produce lined piping systems based on technology and back-up support provided by M/s. BTR Silvertown Limited – UK.(Then the original Licensee of M/s. Resistoflex Corporation USA now known as Crane Resistoflex,)

- The association with M/s. BTR Silvertown made it possible for HORIZON to adopt the technology of M/s. Crane Resistoflex who were the pioneers and innovators of lined piping systems.
- Horizon thus acquired a proven and established technology to process Fluoropolymer by Extrusion and for lining valve bodies, components and fittings by the Injection Moulding technique.
- The products manufactured at HORIZON are not based on process parameters arrived or concluded by trial and error method which other processors are forced to do or adopt. Polymers or resins are determined by its grain size, specific gravity, and melt flow index. Considering these characteristics appropriate temperature conditions need to be applied to the resin/polymer, equipment and dies otherwise the entire batch of processed resin/polymer results in the extruded liners getting either over sintered or under sintered depending on the thickness. There could be cold spots, degradation of polymers and also cracks due to stress.
- In addition to acquiring process know-how the collaboration package also provided for: -
 - Design of all critical process and testing equipment with full supervision during manufacture erection & commissioning
 - Design of patterns tooling and dies
 - Implementation of manufacturing standards and quality control procedures
 - Type testing of all products and carrying out factory audits at regular intervals.
- In-house extrusion and sintering process made available to us have some defined built in
 process parameters which produces a high quality liner having excellent mechanical and
 specific gravity properties which in turn enhances the life of the end product. Facilities for
 testing liners are available in -house and are carried out on *every* batch. In addition a
 "ROLL TEST" is carried out on each PTFE liner.
- Moulding technique adopted is unique unlike the transfer moulding technique adopted by competition. The built-in design features in our cast fittings, effective temp and hydraulic controls provided on our machines, tooling assembly and moulding technique adopted makes the product versatile which can withstand all critical/abusive service conditions.

HORIZON POLYMER ENGINEERING PVT LTD

HORIZON POLYMER ENGINEERING PVT LTD

- Horizon supplies a combination of lined piping system i.e. PP/PVDF/PTFE/PFA/FEP with
 valves to suit each service condition or application which eventually helps to make the piping
 costs economical and also bring down the overall project cost.
- Horizon has the best designed lined ball valve and ball check valves produced ion house with unique built-in features required by our overseas customers. Lined ball valves available or produced in the Indian market are split body designs (2 half bodies) which are lined on job work basis. HORIZON ensures that all valves are assembled and tested in a "Dust Free" room
- HORIZON valves can be directly fitted with Actuators if required on line, External jackets are
 possible to be provided for specific process conditions and for severe applications the PFA
 lined ball can be directly replaced with a Ceramic Ball.
- PFA Lined Ball valves produced at HORIZON were tested satisfactorily for Helium Leak Test as per ASME Sec V Article 10 which was carried out on entire valve body/Bonnet/Joints/Stuffing Box and in the presence of Third party Inspection Agency.
- HORIZON has acquired certifications for Quality Systems as per ISO 9001:2008 and also Certification as per EU – PED Directive 97/23/EC with approval to use the CE marking on our valves. In addition we are also approved by CHEMOURS TEFLON[®] LICENSING PROCESSOR for Lined pipe work and Valves.
- HORIZON is a professionally managed organization having its own sales force on all India basis who can personally interact and directly help to suggest an ideal solution to your corrosion problem with full back-up support and technical expertise.
- HORIZON strength is in adopting the proven technology for over 20 years which has helped solve very severe corrosion problems for many of our customers and today we have the confidence of over hundred customers even overseas who rely on our expertise.

HORIZON will have a solution to your corrosion problem

Contact Details:

Horizon Polymer Engineering (P) Limited 204, Sumer Kendra Pandurang Bhudhkar Marg Worli, Mumbai – 400 018 India

Tel: +91 22 2496 5031 (6 Lines) Fax: +91 22 2496 1073

HORIZON POLYMER ENGINEERING PVT LTD

SMERA RATINGS LIMITED		nited				10th March, 2015 (Valid Till 09th March, 2016)	criteria developed for thus purpose. ancial prammeters of the enterprise. be accurate and reliable. tind and SMERA, in particular.	
एन. एस. आई. सी. NGSIC ISO 9001 : 2008	NSIC-D&B-SMERA erformance & Credit Rating	Con Polymer Engineering Private Limited	has been evaluated by SMERA RATINGS LIMITED hereby assign the subject a NSIC-D&B-SMERA Performance & Credit Rating of	SE 1A (Highest Performance Capability and High Financial Strength)	Executive Director Mr. Gautam H. Sheth		Disclaimer D&B-SMERA Rating shall be read with the Rating Report on the subject issued by SMERA Ratings are based on the padgement of SMERA, using a set of criteria developed for that purpose. Lit valid for period of one year, subject to however, no significant changes/events occur during that Period, which could materially effect the horizos & the financial pramaters of the encrytes. All information contained in the NSIC-D&B-SMERA Rating Report is obtained by SMERA from the rated subject and thad party sources, and is helieved to be securate and reliable. By reasonable care has been taken to ensure that the information for warranty, timeliness or completences of any sub-mined. In particulat, in particulat, and the reasonable care has been taken to ensure that the information or warranty.	In providing this Raing. SMERA does not underwrite the roks of any third party or that of the subject.
	N Perfor	Horizon Po	We hereby assig	(Hig	Mahater	Authorised Signatory	The NSIC-D&B-SMERA Rating shall be read with the R. The Rating is valid for period of one year, adhpet to howe All information contained in the NSIC-D&B-SI Although reasonable care has been taken to ensure tha	In provi
HORIZON	WORKS :- C1 -B	, 1650/1618, GID	C INDL. ESTA	TE, CHHATR	AL, DIST. GANE	HINAGAF	PVT LTD R (N.G) - 382 729 IBAI-400 018. INDIA	

Horninglow Road Burton-on-Trent Staffs. DE 13 OSN **BTR Silvertown Limited** U.K. Tel : 0283 510510 Telex : 34419 Fax: 0283 510052 Cables : Britgoods Burton Our ref Date Your ref TG/LR 12 April 1995 Certificate of Conformity This is to certify that products manufactured at Horizon Polymer Engineering Limited, Chhatral are under sub-licensed specifications, methods and equipments provided by BTR Silvertown Ltd. This lined pipework has been tested to relevant ASTM specification and found to conform in all respects to the Performance requirements of the specification. The original License is held by BTR Silvertown Limited from Resistoflex Corp. of Roseland, New Jersey and has been in place since 1958. This includes the patented Thermolok process for fixing liners in pipespools. The methods of test, material of construction, physical dimensions and material physical properties conform to the requirements of the following specifications. Product Specification FMS 1 Testing of Lined Pipework FMS₂ FMS 5 Fabrication of Spools for Lining SG Iron Castings for Plastic Lining FMS 6 Purchase of Controlled Diameter Steel Pipe for Plasting Lining FMS 7 **FMS 12** Approved Polymers FMS 27 Qualification Test. Orden T. GORDON Technical Service Manager Chemical Plant Division 0 HORIZON POLYMER ENGINEERING PVT LTD ዮ -g WORKS :- C1 -B, 1650/1618, GIDC INDL. ESTATE, CHHATRAL, DIST. GANDHINAGAR (N.G) - 382 729 HORIZON POLYMER OFFICE :- 204/205, SUMER KENDRA, PANDURANG BHUDHKAR MARG, WORLI, MUMBAI-400 018. INDIA

Standard Specification for Plastic-Lined Ferrous Metal Pipe, Fittings, and Flanges¹

This standard is issued under the fixed designation F1545; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon () indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers factory-made plastic-lined ferrous metal pipe, fittings, and flanges intended primarily for conveying corrosive fluids. Requirements for materials, workmanship, dimensions, design, fabrication, working pressure and temperatures, test methods, qualification requirements, and markings are included.

1.1.1 This specification does not define the suitability of different liner materials to various chemical and operating environments. Refer to the manufacturer's chemical resistance data for suitability recommendations.

1.1.2 This specification does not include products coated with plastics.

1.2 This specification covers plastic-lined pipe, flanges, and fittings as listed in Table 1. Pressure limitations shall be in accordance with ANSI/ASME B16 Standards, except reduced pressure limitations may be established by the manufacturer, considering both pressure and temperature limitations of the ferrous metal housing and the sealing ability of the liner.

NOTE 1-In this specification, propylene plastics cover those materials defined as both polypropylene plastics and propylene plastics in Terminology F412. Both materials are identified as "PP" on the product. Note that this is at variance with Terminology D1600, where "PP" is the abbreviation for polypropylene.

1.3 The plastic-lined flanged pipe and fitting assemblies are limited to temperatures shown in Table 2. End users should consult with manufacturers as to the likely result of using a particular lined piping component at temperatures below the rated minimum.

Note 2-The temperature limitations are based on noncorrosive test conditions. Use in specific aggressive environments may alter temperature limitations. In such instances, specific temperature limits shall be established by mutual agreement between the purchaser and the manufacturer.

1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:²
- A48/A48M Specification for Gray Iron Castings
- A53/A53M Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
- A105/A105M Specification for Carbon Steel Forgings for **Piping Applications**
- A106/A106M Specification for Seamless Carbon Steel Pipe for High-Temperature Service
- A126 Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings
- A135 Specification for Electric-Resistance-Welded Steel Pipe
- A182/A182M Specification for Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service
- A216/A216M Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service
- A234/A234M Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High **Temperature Service**
- A278/A278M Specification for Grav Iron Castings for Pressure-Containing Parts for Temperatures Up to 650°F (350°C)
- A312/A312M Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes
- A351/A351M Specification for Castings, Austenitic, for **Pressure-Containing Parts**
- A395/A395M Specifi for Ferritic Ductile Iron Pressure-Retaining Castings for Use at Elevated Temperatures
- A403/A403M Specification for Wrought Austenitic Stainless Steel Piping Fittings

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States

¹ This specification is under the jurisdiction of ASTM Committee F17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.11 on Composite.

Current edition approved Aug. 1, 2009. Published September 2009. Originally approved in 1995. Last previous edition approved in 2003 as F1545 - 97(2003). DOI: 10.1520/F1545-97R09.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

- A513 Specification for Electric-Resistance-Welded Carbon and Alloy Steel Mechanical Tubing
- A536 Specification for Ductile Iron Castings
- A587 Specification for Electric-Resistance-Welded Low-Carbon Steel Pipe for the Chemical Industry
- D729 Specification for Vinylidene Chloride Molding Compounds³
- D792 Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement
- D1457 Specifi for Polytetrafl (PTFE) Molding and Extrusion Materials³
- D1505 Test Method for Density of Plastics by the Density-Gradient Technique
- D1600 Terminology for Abbreviated Terms Relating to Plastics
- D2116 Specification for FEP-Fluorocarbon Molding and **Extrusion Materials**
- D3159 Specification for Modified ETFE-Fluoropolymer Molding and Extrusion Materials
- 222 Specification for Unmodified Poly(Vinylidene Fluoride) (PVDF) Molding Extrusion and Coating Materials
- D3307 Specifi for Perfl (PFA)-Fluorocarbon Resin Molding and Extrusion Materials
- D4101 Specification for Polypropylene Injection and Extrusion Materials
- D4894 Specification for Polytetrafluoroethylene (PTFE) Granular Molding and Ram Extrusion Materials
- D4895 Specification for Polytetrafluoroethylene (PTFE) **Resin Produced From Dispersion**
- D5575 Classification System for Copolymers of Vinylidene Fluoride (VDF) with Other Fluorinated Monomers

F412 Terminology Relating to Plastic Piping Systems

- 2.2 ANSI/ASME Standards:
- B 16.1 Cast Iron Pipe Flanges Flanged Fittings⁴
- **B** 16.5 Steel Pipe Flanges and Flanged Fittings⁴
- B 16.9 Factory-Made Wrought Steel Butt Welding Fittings⁴
- B 16.28 Wrought Steel Buttwelding Short Radius Elbows and Returns
- B 16.42 Ductile Iron Pipe Flanges and Flanged Fittings-Section IX of the ASME Boiler and Pressure Vessel Code⁴

2.3 Manufacturers Standardization Society (MSS) Standard:

MSS SP-43 Wrought Stainless Steel Butt-Welding Fittings⁵

3. Terminology

3.1 General-The definitions used are in accordance with Terminologies F412 and D1600, unless otherwise indicated.

4. Materials

4.1 Lining:

4.1.1 Material-The lining shall be made from a resin conforming to one of the requirements in Table 3.

4.1.2 Mechanical Properties-The minimum tensile strength and minimum elongation at break when tested in accordance with the specifications outlined in 4.1.1 shall conform to Table 4, except the test specimens shall be obtained from extruded or molded liners. Sample orientation is not critical except for PTFE liners made using the paste extrusion process. For paste-extruded PTFE liners, test specimens with their major axis cut longitudinally shall meet the mechanical property criteria listed in Table 4, and specimens cut circumferentially shall have a minimum tensile strength at break of 2500 psi (17.3 MPa) and a minimum elongation of 200 %.

4.1.3 Specific Gravity-Specific gravity for polytetrafluoroethylene (PTFE) resins, when tested in accordance with Test Methods D792 or D1505, shall be as follows:

Lining Material, Resin Type	Specific Gravity
Polytetrafluoroethylene (PTFE) Types I and	2.14 to 2.19
Polytetrafluoroethylene (PTFE) Type III	2.13 to 2.21

4.2 *Ferrous Pipe and Fittings*:

4.2.1 Mechanical Properties—The mechanical properties of the pipes and fittings shall conform to the appropriate specifications listed in Table 5, except as they are influenced by accepted methods of processing in the industry (for example, Van Stone flaring, bending, swaging, welding, and threading). The carbon steel pipe and wrought fittings shall be welded or seamless steel, Schedule 40 or 80, except Schedule 30 pipe may be used in 8, 10, and 12-in. nominal size. Schedule 20 or standard wall may be used in nominal sizes 12 in. and larger.

4.2.2 Finish—The interior surfaces of all housings shall be clean and free of mold burrs, rust, scale, or other protrusions, which may adversely affect the integrity or performance of the lining.

4.2.3 General—All pipe and fitting end connections shall be manufactured to provide a minimum 1/8-in. radius or chamfer in the transition from pipe wall to flange or lap face. This radius or chamfer is required to reduce stress concentrations in the plastic liner as it is flared or molded over the flange face or stub end. For PTFE-lined pipe and fittings, a 1/8-in. minimum radius must be provided. A perforated metal collar which seats over the flange chamfer may be used to provide this required radius.

4.2.4 Dimensional-Flanges and fittings used for plasticlined pipe shall conform dimensionally (Note 3) to the following industry ferrous flange and fitting dimensional standards:

Metallurgy Steel	Specification ANSI B 16.5
Ductile iron	ANSI B 16.42
Cast iron	ANSI B 16.1

Note 3-Center-to-face dimensions include the plastic lining.

4.2.5 Welding—All metal welding shall be done by welders or welding operators using welding procedures qualified under the provisions of the ASME Boiler and Pressure Vessel Code (Section IX).

5. Requirements

5.1 Dimensions:

³ Withdrawn. The last approved version of this historical standard is referenced on www.astm.org.

Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Three Park Ave., New York, NY 10016-5990, http:// www.asme.org

⁵ Available from Manufacturers Standardization Society of the Valve and Fittings Industry (MSS), 127 Park St., NE, Vienna, VA 22180-4602, http://www.msshq.com.

F1545 – 97 (2009)

5.1.1 *Housing*—Housing installation dimensions are as required in the applicable material specification in accordance with 4.2.4.

5.1.2 *Plastic Wall Thickness*—Pipe and fitting liners shall have a minimum wall thickness and face thickness in accordance with Table 6.

5.1.3 *Lining Flare Diameter*—The outside diameter of the flare covering the gasket portion of the flange or the full face of the lap-joint stub end shall not be less than the diameter specified in Table 7. The flared portion of the lining shall be concentric with the flared portion of the pipe within ¹/₁₆ in. (1.6 mm).

5.1.4 *Tolerances*—Tolerances for pipe, flanges, and fittings shall be in accordance with Table 8. Bolt holes in both flanges on a fixed flange spool shall straddle the same center line to facilitate alignment. Finished lined (plastic flare to plastic flare) fabricated fittings shall conform to the nominal center-to-face dimensions as specified in ANSI B 16.1, B 16.42, or B 16.5 with the applicable tolerances.

5.2 Flange Construction:

5.2.1 Threaded flanges shall be secured in position to prevent inadvertent turning of the flange.

5.2.2 Socket-type flanges, except threaded, shall be fully back-welded to the pipe housing and the inside surfaces of the socket flanges shall be ground smooth.

5.2.3 Slip-on flanges shall be fully back-welded.

Note 4-No welding shall be done on lined components in the field.

5.2.4 Modified slip-on flanges used as lap-joint flanges may be used with flared laps formed by flaring the pipe. The backing flange for the flared metallic lap shall have a $\frac{1}{8}$ -in. bevel or $\frac{1}{8}$ -in. corner radius at the bore to provide clearance for the fillet of the flared lap. The outside diameter of the flared lap shall be in accordance with the dimension of an ANSI B 16.9 lap-joint stub end.

5.2.5 Lap-joint (or Van Stone) flanged ends may be manufactured by standard forming techniques or by using fully welded Type A MSS SP-43 or ANSI B 16.9 lap-joint stub ends. Van Stone flares shall have a fillet radius compatible with the corner radius of the mating flange and shall not contain any cracks or buckles. Van Stone flares and stub ends shall have a radius to provide a smooth transition for the plastic flare. Only lap joint flanges in accordance with ANSI B 16.42 and B 16.5 shall be used.

5.3 *Venting*—Each pipe and fitting shall be provided with a venting system that will release any pressure between the liner and the housing.

Note 5—One or more holes in the housing, or a helical groove system inside the housing, that connects flange vents, has provided adequate venting.

Note 6—Venting is not required with PVDF, PP, ETFE, or PVDC liners.

5.4 Workmanship:

5.4.1 Pipe and fittings shall show no evidence of pinholes, porosity, or cracks when inspected in accordance with 5.5.2. The linings shall fit snugly inside the pipe and fitting housings. Any bulges or other obvious indications of poor contact with the housing shall be cause for rejection.

5.4.2 The gasket seating surface of the lining shall be free of surface defects that could impair sealing effectiveness. Scratches, dents, nicks, or tool marks on the seating surface shall not be deeper than 10 % of the face thickness.

5.5 Performance:

5.5.1 *Qualification*—Lined pipe and fittings must be capable of meeting the qualification requirements specified in Section 6.

5.5.2 *Inspection*—Each spool and fitting, prior to shipment, shall be hydrostatically or electrostatically tested in accordance with Section 7 and shall subsequently be inspected visually to verify conformance to the requirements of 5.4.

6. Test Methods

6.1 High-Temperature Test:

6.1.1 Cycle representative production samples of lined pipe and fittings in an oven from room temperature to the test temperature of the liner type (Table 9) to determine the ability of the lined components to withstand heat aging and temperature cycling. Test a minimum of two pipe spools, tees, and 90° elbows in each size.

6.1.2 *Procedure*—Install companion flanges at the manufacturer's recommended torque value, and affix a thermocouple in the ferrous housing to measure the temperature. Pipe spools shall be at least 3 ft (1 m) long. After 3 h in an oven at the test temperature (Table 9) as indicated by the thermocouple, air cool the lined components to 122° F (50°C) maximum. Repeat this test for a total of three cycles.

6.1.3 *Inspection*—Inspect lined pipe and fittings after each cycle for distortion or cracks in the lining. At the completion of the third cycle, subject tested specimens to the hydrostatic or electrostatic test described in Section 7.

6.2 Low-Temperature Test:

6.2.1 After the high-temperature test, subject the same parts used for 6.1 to a cold test at 0° F (-18°C) for a minimum of 48 h. New parts may also be used.

6.2.2 *Procedure*—Install companion flanges at the manufacturer's recommended torque value, and affix a thermocouple to the ferrous housing to measure the temperature. Pipe spools shall be at least 3 ft (1 m) long. After 48 h at or below 0°F (-18° C), as indicated by the thermocouple, allow the parts to warm to a minimum of 60°F (16° C).

6.2.3 *Inspection*—Inspect lined pipe and fittings for distortion or cracks in the lining. Subject tested specimens in the hydrostatic or electrostatic test described in Section 7.

6.3 Steam-Cold Water Cycling Test:

6.3.1 Subject representative production samples of lined pipe and fittings to steam-cold water cycling to determine the ability of the lined components to withstand rapid temperature changes. Test a minimum of two pipe spools, tees, and 90° elbows in each size.

6.3.2 *Procedure*—Assemble lined pipe and fittings with suitable flanges having provision for the introduction of steam air, cold water, and for drainage. Install the flange using the manufacturer's recommended torque value. Pipe spool length shall be 10 ft (3 m) minimum. Mount the sample in such a manner as to permit complete drainage and venting. Then subject the sample to 100 consecutive steam-cold-water cycles, each consisting of the following in the sequence given:

F1545 – 97 (2009)

6.3.2.1 Circulate gage saturated steam at the pressure listed in Table 10 through the sample until the ferrous housing skin temperature adjacent to the flange at the outlet end of the sample has not changed more than $5^{\circ}F(3^{\circ}C)$ in 10 min.

6.3.2.2 Close off the steam.

6.3.2.3 Circulate water at a maximum temperature of 77°F (25°C). Circulate the cooling water until the ferrous housing skin temperature adjacent to the flange at the outlet end of the sample measures 122°F (50°C) or lower.

6.3.2.4 Vent and introduce air to purge the sample for a minimum of 1 min making certain that it is completely drained of water.

6.3.3 *Inspection*—There shall be no evidence of leakage from the venting system or from behind the plastic faces during the 100 cycles. At the completion of the test, the liner shall exhibit no buckling or cracking. On PFA, PTFE, and FEP, formation of water blisters shall not be cause for rejection.

NOTE 7—These surface blisters are formed due to absorption of the steam vapors by the liner and subsequent condensation in the liner. The blisters do not adversely affect liner performance.

6.3.4 Subject the lined pipes or fittings to either the hydrostatic test described in Section 7 or, after drying, to the electrostatic test described in Section 7.

6.4 Vacuum Testing:

6.4.1 Test representative samples of lined pipe and fittings to determine the vacuum ratings of the lined components. Test a minimum of two pipe spools, tees, and 90° elbows in each size. Conduct tests at room temperature, at the manufacturer's maximum recommended service temperature, and at one intermediate temperature level. Full vacuum is defined as 29.6 in. Hg corrected to sea level.

NOTE 8—Vacuum temperature ratings for pipe and fittings are published in the manufacturer's literature.

Note 9—The vacuum test is performed on pipe and fittings that have not been exposed to prior service. Use in specific environments may alter the vacuum-temperature ratings.

6.4.2 *Procedure*—For pipe spools, specimen lengths shall be at least 10 pipe diameters. Install a flange incorporating a sight glass at one end and a flange suitable for drawing a vacuum at the other end. Affix a thermocouple to the ferrous housing to measure the temperature. Heat the specimens uniformly externally with the sight glass end visible. Begin the test after the desired ferrous housing temperature has been reached. Hold a selected initial vacuum level for 8 h, and if no failure occurs, increase the vacuum by 5 in. Hg. Repeat this every 8 h until failure or full vacuum is reached. Failure is defined as any buckling or collapse of the liner. If failure occurs at the initial vacuum level selected, test a new test specimen at a lower vacuum level to determine the failure threshold. The vacuum failure threshold is defined as 1 in. Hg below that at which failure occurs.

NOTE 10—The external pressure method to simulate higher than full vacuum can be used to establish the failure threshold when full vacuum is achieved. With the use of pressure taps, a pressure is applied between the plastic liner outside diameter and the pipe inside diameter.

6.4.3 The vacuum rating shall be 80 % of the failure threshold value.

6.4.4 At the test completion and after establishing the vacuum rating, place a duplicate specimen in an oven at the test temperature. Apply the rated vacuum to the specimen after the desired skin temperature has been reached. Achieve the rated vacuum within 2 min and apply continuously for 48 h. If no liner buckling or collapse occurs, the rated vacuum shall be considered acceptable.

6.5 *Retest*—When a test specimen fails to meet the requirements of either 6.1.3, 6.2.3, 6.3.3, 6.3.4, 6.4.2, or 6.4.4, correct the cause of failure and repeat the specified test.

7. Inspection Tests

7.1 *Hydrostatic Pressure Test*—The internal test pressure shall be 250 psi (1.7 MPa) minimum for Class 125 (0.9-MPa) components and 425 psi (2.9 MPa) minimum for Class 150 (1.0-MPa) and Class 300 (2.1-MPa) components. Conduct the test at ambient temperature. Completely fill the pipe and fitting with clean water and bleed the system free of all air prior to the application of pressure. Reach full test pressure within 1 min and maintain for a further 3 min. Observe the pressure gage throughout the test for any evidence of leakage, which shall be cause for rejection.

7.2 *Electrostatic Test*—Conduct the test with a nondestructive high-voltage tester at an output voltage of 10 kV. A visible or audible spark, or both, that occurs at the probe when electrical contact is made with the housing because of a defect in the liner shall be cause for rejection.

8. Finish

8.1 The outside surface of all lined pipe and fittings, other than stainless steel, shall be coated with a corrosion-resistant primer over a properly prepared surface.

9. Quality Assurance

9.1 When the product is marked with this designation, F1545, the manufacturer affirms that the product was manufactured, inspected, sampled and tested in accordance with this specification and has been found to meet the requirements of this specification

10. Marking

10.1 *Quality Assurance*—When the product is marked with this ASTM designation, it affirms that the product was manufactured, inspected, sampled, and tested in accordance with this specification and has been found to meet its requirements

10.2 *Quality of Marking*—The markings shall be applied to the pipe in such a manner that it remains legible (easily read) after installation and inspection have been completed.

10.3 The pipe and fittings shall be marked with the following information:

10.3.1 Nominal pipe size,

10.3.2 Liner material identification,

10.3.3 Manufacturer's name (or trademark),

10.3.4 Length (on pipe only), and

10.3.5 ASTM designation.

10.4 Other information such as order numbers, part numbers, item numbers, and so forth shall be provided at the request of the purchaser.

10.5 Pipe liner identification shall be provided on a band utilizing raised letters. The band shall typically be located near the flange.

11. Packaging

11.1 The gasket face of each spool shall be protected by end plates or other suitable protective means.

11.2 Fittings shall have the same protective covers on the gasket faces unless protected by other means, such as individual boxing.

12. Keywords

12.1 plastic-lined ferrous metal fittings; plastic-lined ferrous metal flanges; plastic-lined ferrous metal pipe

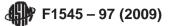
	•			
Material	ANSI Class	Nominal Pipe Size, in. (mm)		
Ethylene Tetrafluoroethylene	150/300	1 to 10 (25 to 254)		
Copolymer (ETFE) Perfluoro	1 = 0 / 0 0 0			
(Alkoxyalkane) Copolymer	150/300	1/2 to 12 (13 to 305)		
(PFA)				
Perfluoro (Ethylene-Propylene)	150/300	1 to 12 (25 to 305)		
Copolymer (FEP)				
Poly(Vinylidene Chloride) (PVDC)	125/150/300	1 to 8 (25 to 203)		
Poly(Vinylidene Fluoride) (PVDF)	150/300	1 to 10 (25 to 254)		
Poly(Vinylidene Fluoride)	150/300	1 to 10 (25 to 254)		
Copolymer (PVDF)				
Polytetrafluoroethylene (PTFE)	150/300	1 / 2 to 24 (13 to 610)		
Propylene and Polypropylene (PP)	125/150/300	1 / 2 to 16 (13 to 406)		

TABLE 2 Temperature Specifications

Material	Temperature Range, °F (°C)
Ethylene Tetrafluoroethylene Copolymer (ETFE)	-20 to 300 (-29 to 149)
Perfluoro (Alkoxyalkane) Copolymer (PFA)	-20 to 500 (-29 to 260)
Perfluoro (Ethylene-Propylene) Copolymer (FEP)	-20 to 300 (-29 to 149)
Poly(Vinylidene Chloride) (PVDC) ^A	0 to 175 (-18 to 79)
Poly(Vinylidene Fluoride) (PVDF)	0 to 275 (-18 to 135)
Poly(Vinylidene Fluoride) Copolymer (PVDF)	-20 to 275 (-29 to 135)
Polytetrafluoroethylene (PTFE)	-20 to 500 (-29 to 260)
Propylene and Polypropylene (PP)	0 to 225 (-18 to 107)

 $^{\rm A}$ Storage or handling below 20°F (–7°C) of uninstalled 4, 6, and 8-in. components should be avoided.

TABLE 3 Polymer Standard Specifications^A


Lining Material—Resin Type	Standard Resin Specification	Allowable Resin Classification	Standard Liner Color	Maximum Filler Material (by weight)
Polypropylene (PP)	ASTM D4101	Type I and II	orange	<30 % glass fiber
Poly(Vinylidene Chloride) (PVDC)	ASTM D729		gray	<20 % glass fiber
Poly(Vinylidene Fluoride) (PVDF)	ASTM D3222		black	-
Poly(Vinylidene Fluoride) Copolymer (PVDF)	ASTM D5575		black	
Polytetrafluoroethylene (PTFE)	ASTM D1457		white	
	ASTM D4894			
	ASTM D4895			
Perfluoro (Ethylene-Propylene) Copolymer (FEP)	ASTM D2116	Type III	green	
Perfluoro (Alkoxyalkane) Copolymer (PFA)	ASTM D3307	Type II	natural	
Ethylene Tetrafluoroethylene Copolymer (ETFE)	ASTM D3159	Туре І	natural	

^AA maximum of 1 % by weight of additives or colorants, or both, is permissible. Colorants, if used, shall be identified in the manufacturer's specification. Clean, reworked resins may be used provided all mechanical property requirements are maintained. Only virgin PTFE resin may be used.

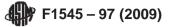
TABLE 4 Polymer	Mechanical	Properties
-----------------	------------	------------

Lining Material—Resin Type	Minimum Tensile Strength at Break, psi (MPa)	Minimum Elongation at Break, %
Polypropylene (PP) Type I	4000 (27.6) ^A	10 ^A
Polypropylene (PP) Type II	3000 (20.7) ^A	10 ^A
Polypropylene (PP) 30 % Glass Filled	2500 (17.3) ^A	2 ^{<i>A</i>}
Poly(Vinylidene Chloride) (PVDC)	1500 (10.3) ^A	2 ^A
Poly(Vinylidene Fluoride) (PVDF)	4500 (31.0)	10
Poly(Vinylidene Fluoride) Copolymer (PVDF)	4000 (27.6)	300
Polytetrafluoroethylene (PTFE)	3000 (20.7)	250
Perfluoro (Ethylene-Propylene) Copolymer (FEP)	3000 (20.7)	250
Perfluoro (Alkoxyalkane) Copolymer (PFA)	3800 (26.2)	300
Ethylene Tetrafluoroethylene Copolymer (ETFE)	6500 (44.8)	275

^A Minimum tensile strength and elongation at yield.

TABLE 5 Approved Ferrous Metal Flange and Fitting Material Standards (ASTM)

	•	,	
Lining Material	Pipe Specifications	Flange Specifications	Fitting Specifications
PVDF, PTFE, FEP, ETFE,	A53/A53M	A105/A105M	A105/A105M
and PFA	A106/A106M		
	A135	A182/A182M	A182/A182M
	A312/A312M	A216/A216M	A216/A216M
	A513	A395/A395M	A234/A234M
	A587	A536 (60-40-18)	A351/A351M
			A395/A395M
			A403/A403M
			A536 (60-40-18)
PP and PVDC	A53/A53M	A105/A105M	A48/A48M
	A106/A106M		A105/A105M
	A135	A182/A182M	A126
	A312/A312M	A216/A216M	
	A513	A395/A395M	A182/A182M
	A587	A536	A216/A216M
			A234/A234M
			A278/A278M
			A351/A351M
			A395/A395M
			A403/A403M
			A536


TABLE 6 Minimum Liner Wall Thickness, in. (mm)^A

Size, in.				Liner Material			
-	PTFE	PVDF	PP	PFA	FEP	PVDC	ETFE
1	0.120 (3.05)	0.100 (2.54)	0.125 (3.18)	0.100 (2.54)	0.100 (2.54)	0.094 (2.39)	0.100 (2.54)
1 1/2 2	0.120 (3.05) 0.120 (3.05)	0.100 (2.54) 0.100 (2.54)	0.125 (3.18) 0.125 (3.18)	0.100 (2.54) 0.100 (2.54)	0.100 (2.54) 0.100 (2.54)	0.094 (2.39) 0.094 (2.39)	0.100 (2.54) 0.100 (2.54)
21/2 3	0.120 (3.05) 0.120 (3.05)	0.100 (2.54) 0.100 (2.54)	0.125 (3.18) 0.125 (3.18)	0.100 (2.54) 0.100 (2.54)	0.100 (2.54) 0.100 (2.54)	0.094 (2.39) 0.094 (2.39)	0.100 (2.54) 0.100 (2.54)
4	0.120 (3.05)	0.100 (2.54)	0.125 (3.18)	0.100 (2.54)	0.100 (2.54)	0.094 (2.39)	0.100 (2.54)
6	0.125 (3.18)	0.100 (2.54)	0.125 (3.18)	0.100 (2.54)	0.100 (2.54)	0.094 (2.39)	0.100 (2.54)
8	0.125 (3.18)	0.100 (2.54)	0.125 (3.18)	0.100 (2.54)	0.100 (2.54)	0.094 (2.39)	0.100 (2.54)
10	0.125 (3.18)	0.100 (2.54)	0.125 (3.18)	0.100 (2.54)	0.100 (2.54)		
12	0.125 (3.18)		0.125 (3.18)		0.100 (2.54)		
14	0.125 (3.18)						
16	0.125 (3.18)						
18	0.125 (3.18)						
20	0.150 (3.81)						
24	0.150 (3.81)						

^A Minimum liner face thickness shall be 80 % of minimum liner wall thickness.

TABLE 7 Lining Flare Diameter

	3	
Nominal Pipe Size, in.	Minimum Flare Diameter, in. (mm)	
1/2	1¼ (31.8)	
3⁄4	1%16 (39.7)	
1	11/8 (47.6)	
1½	211/16 (68.3)	
2	37/16 (87.3)	
3	45% (117.5)	
4	515/16 (150.8)	
6	8 (203.2)	
8	101/16 (255.6)	
10	121/4 (311.2)	
12	14¾ (365.1)	
14	15½ (393.7)	
16	17¾ (450.9)	
18	201/4 (514.4)	
20	221/4 (565.2)	
24	261/4 (666.8)	

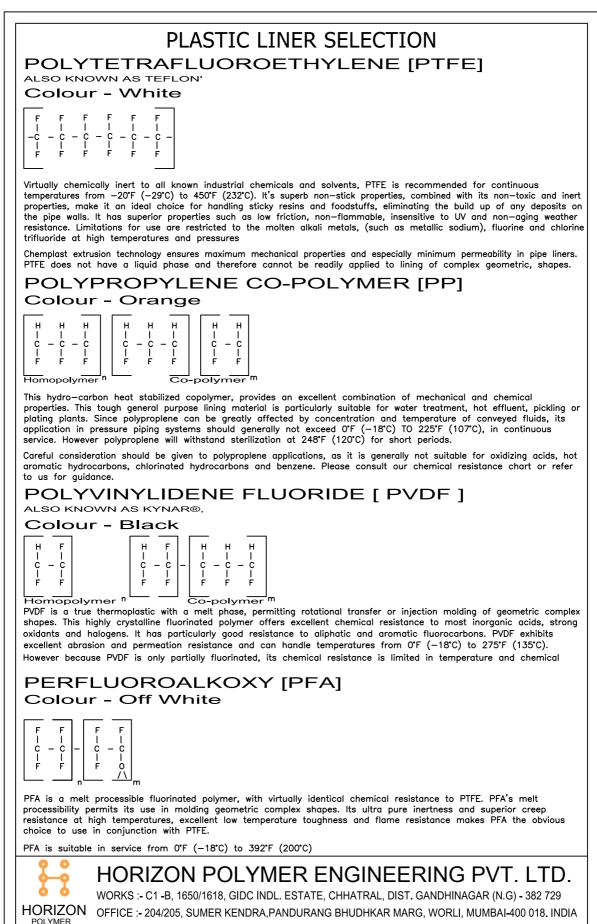
TABLE 8 Tolerances for Pipe, Flanges, and Fittings, in. (mm)

Pipe Length	61/8 (63.2)
Fixed flange bolt hole alignment	6 ¹ ⁄ ₁₆ (61.6)
Flange perpendicularity (with pipe	3/32 in./ft (7.8 mm/m) of diameter
centerline)	
Flanges:	
All dimensions	see ANSI B 16.42 or ANSI B 16.5
Fittings:	
All dimensions see ANSI B 16.1, B 10	6.5 or B 16.42

TABLE 9 Test Temperatures, °F (°C)

PVDC	PP	PVDF	FEP	PTFE	PFA	ETFE
17565			300 6 5			
(7963)	(10763)	(13563)	(149 6 3)	(260 6 3)	(260 6 3)	(14963)

TABLE 10 Steam Test Pressures, psig (kPa)


PVDC	PP	PVDF	FEP	PTFE	PFA	ETFE	
Α	461	0001		.== 0 +	.== 0 =	0-	
	(2867) (207	615)(300	6 20) (862	635) (862	2635)(300	620)

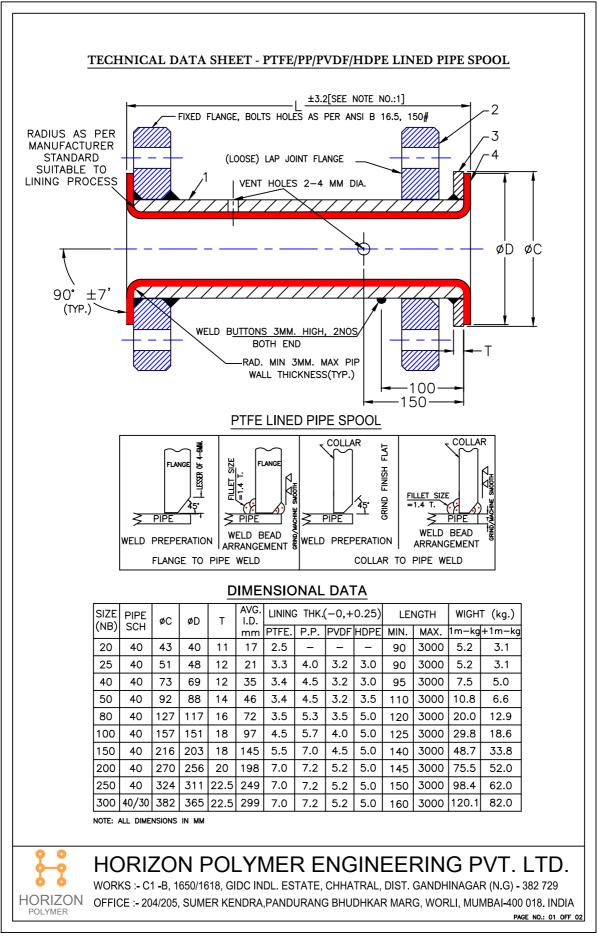
^A The thermocycling test for PVDC lined pipe and fittings should be run using water at $175 \ 6 \ 5^{\circ}$ F (79 $\ 6 \ 3^{\circ}$ C).

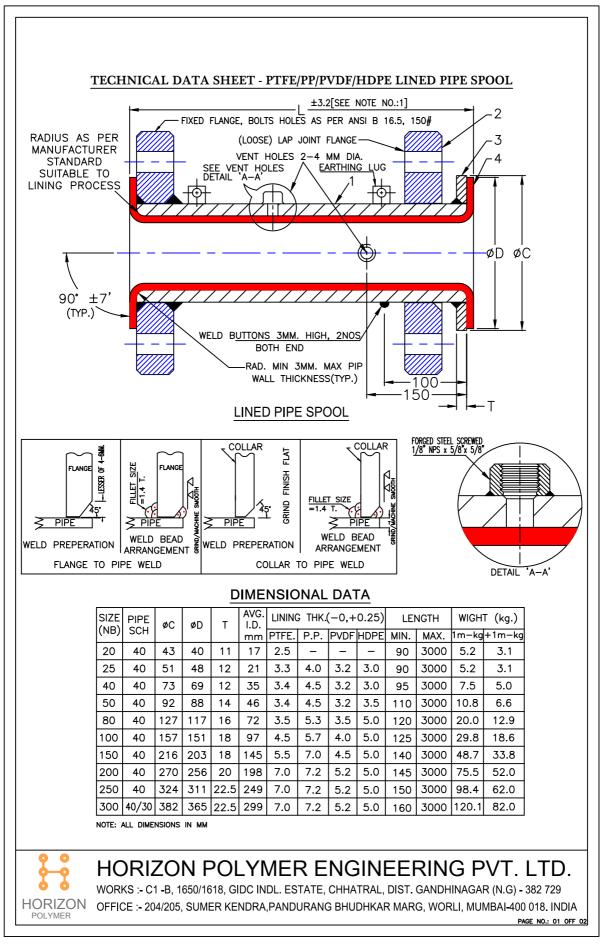
ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

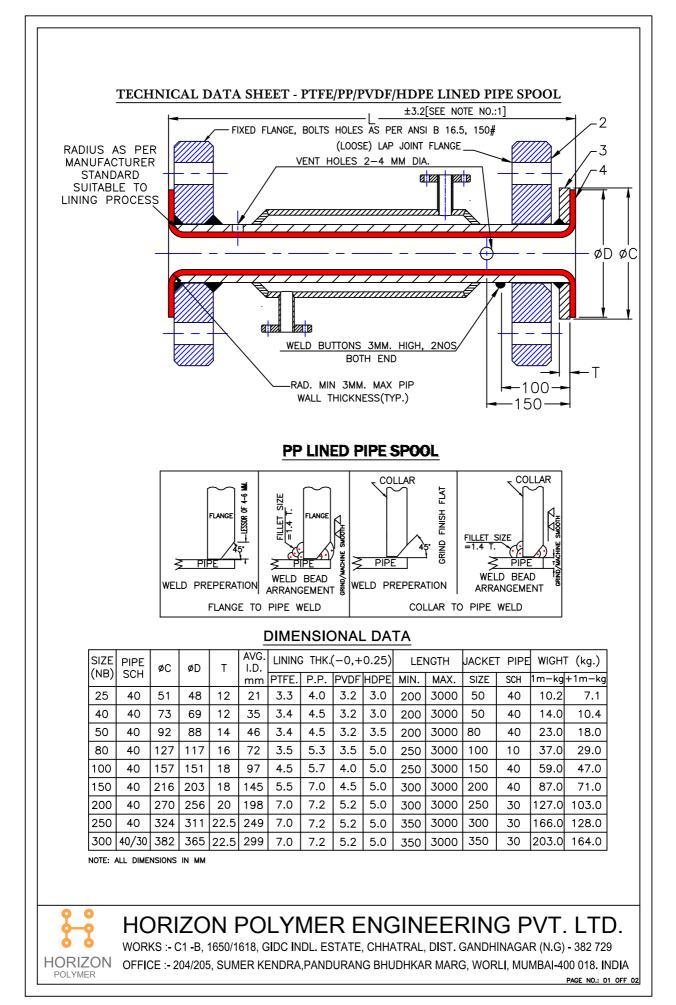
This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

CHEMICAL RESISTANCE CHART									
CORROSIVE STREAM	PP °C	PVDF °C	PTFE / PFA °C	CORROSIVE STREAM	PP °C	PVDF °C	PTFE / PFA °C		
1,1,2-Trichioroethane	NR	65	230	Beet sugar liquors	65	110	230		
1,2-Dibromo Propane		95 ND	230	Benzaldehyde	25	25	230		
1,4 Dioxane 1- Chloro-1-motropropane	25	NR 	230 230	Benzalkonium Chloride Benzene	 NR	 65	230 230		
2,3,4,6-Tetrachlorophenol	25	65	230	Benzenesulfonic acid	25	50	230		
2,4,5-Trichlorophenol	25	65	230	Benzoic acid	65	110	230		
2-Aminoisobutyric acid	50		230	Benzoyl chloride		65	230		
2-Chloro-4-Phenylphenol			230	Benzyl alcohol	50	120	230		
Acetaldehyde	25	NR	230	Benzyl amine	65	25	230		
Acetamide	65	25	230	Benzyl chloride	25	135	230		
Acetic acid (10%)	95 95	110 110	230 230	Bis (2-Butoxyethyl) phthalate Bismuth carbonate	 110	 135	230 230		
Acetic acid (5%) Acetic acid (50%)	95 95	95	230	Bismuth carbonate Black liguor		80	230		
Acetic acid (80%)	50	80	230	Borax	80	135	230		
Acetic Acid (Glacial)	50	50	230	Boric acid	110	135	230		
Acetic Anhydride	25	NR	230	Brine (acid)	95	135	230		
Acetone (10%)	50	50	230	Brine (basic)	80	135	230		
Acetone (100%)	50	NR	230	Brine (chlorinated acid)	50	95	230		
Acetonitrile	25	120	230	Bromine (dry gas)	NR	65	230		
Acetophenone Acetyl Chloride	25 NR	120 120	230 230	Bromine (liquid) Bromine (Water-3% saturated)	NR 25	65 95	230 230		
Acetylene	NR	25	230	Bromine (Water-3% saturated) Bromine chloride (Dry gas)	25 NR	95 120	230		
Acetylene Tetra bromide	NR	65	230	Bromine chloride (Liguid)		95	230		
Acetylene Tetra bromide	NR	135	230	Bromine chloride water (8%)	25	95	230		
Acrylonitrile	50	50	230	Bromoform	NR	65	230		
Adipic acid	65	80	230	Butadiene	NR	120	230		
Air	110	135	230	Butane	NR	120	230		
Allyl Alcohol	65	135	230	Butanediol	80	120	230		
Allyl Chloride Alum	25 110	95 80	230 230	Butanol (Butyl alcohol) Butyl acetate	95 NR	120 25	230 230		
Alum, Ammonium	110	135	230	Butyl acrylate	NR	50	230		
Alum, Chrome	80	135	230	Butyl bromide	NR	135	230		
Alum, Potassium	110	95	230	Butyl chloride	NR	135	230		
Aluminum Chloride (aqueous)	110	135	230	Butyl mercaptan		135	230		
Aluminum Fluoride	110	135	230	Butyl phenol	NR	110	230		
Aluminum Hyd roxide	95	135	230	Butyl phthalate	50	NR	230		
Aluminum Nitrate Aluminum Oxychloride	95 50	135 135	230 230	Butylene (Butadiene) Butyraldehyde		120 65	230 230		
Aluminum Sulfate	110	135	230	Butyric acid	80	110	230		
Ammonia (Anhydrous gas)	65	NR	230	Calcium Bisulfide	95	135	230		
Ammonia (Anhydrous liquid)	110	NR	230	Calcium bisulfite	95	135	230		
Ammonium Acetate (Saturated)	50	80	230	Calcium bisulfite bleach liquor(6%	80	95	230		
Ammonium Beryllium Fluoride			230	total SO2 5% free)					
Ammonium Bifluoride	95	65	230	Calcium carbonate	110	135	230		
Ammonium Bromide (50%)		120	230	Calcium chlorate Calcium chloride (saturated)	95 110	135 135	230 230		
Ammonium Carbonate (Saturated) Ammonium Chloride (Saturated)	110 110	135 135	230	Calcium chlorite	65	95	230		
Ammonium Dichromate	50	120	230	Calcium hydroxide (saturated)	110	135	230		
Ammonium Fluoride (10%)	95	135	230	Calcium hypochlorite	80	95	230		
Ammonium Fluoride (25%)	95	135	230	Calcium nitrate	95	135	230		
Ammonium Fluoride (saturated)	80	135	230	Calcium oxide	110	120	230		
Ammonium Hydroxide (1 %)	110	110	230	Calcium oxide-sulfur		120	230		
Ammonium Hydroxide (1 0%)	110	110	230	Calcium sulfate	110	135	230		
Ammonium Hydroxide (conc.) Ammonium Metaphosphate	110 65	110 110	230 230	Calcium sulfide Cane sugar liquors	 25	110 135	230 230		
Ammonium Nitrate (saturated)	65	135	230	Caprylic acid	50	80	230		
Ammonium Persulfate	65	25	230	CARBITOL ² ethylene glycol ethers	50	135	230		
Ammonium Phosphate	110	135	230	Carbolic acid (see Phenol)			230		
Ammonium Sulfate (saturated)	110	135	230	Carbon bisulfide	NR	25	230		
Ammonium Sulfide	65	50	230	Carbon dioxide (gas)	110	135	230		
Ammonium Thiocyanate	65	135	230	Carbon disulfide (liquid)	NR	25	230		
Amyl Acetate	25	50	230	Carbon monoxide	110 ND	135	230		
Amyl Alcohol Amyl Chloride	25 NR	135 135	230 230	Carbon tetrachloride Carbon Tetrachloride (wet gases)	NR NR	135 135	230 230		
Aniline	50	50	230	Carbonic Acid	110	135	230		
Aniline Hydrochloride (10%)	NR	25	230	Castor oil	50	80	230		
Antimony Trichloride	65	25	230	Chloral (10%)	NR	50	230		
Aqua Regia	25	25	230	Chloral hydrate	NR	25	230		
Ar-Tribromoethylbenzene			230	Chlorinated phenol		65	230		
Arsenic Acid	95	135	230	Chlorine (5% in CCL 4)	NR	95	230		
Aryl Sulfonic Acids	65		230	Chlorine dioxide	NR	65	230		
Barium Carbonate	95	135	230	Chlorine gas (dry)	NR	95	150		
Barium Chloride	95 05	135	230	Chlorine gas (wet) Chlorine liquid (pressurized)	NR NR	95 95	150 150		
Barium Hydroxide	95	135 135	230 230	Chlorine liquid (pressurized) Chlorine water (saturated)	NR 65	95 110	150 230		
Rarium Sultate							<		
Barium Sulfate Barium Sulfide	95 95	135	230	Chloroacetic acid	50	NR	230		


	CHE	MICA	L RES	SISTANCE CHART			
CORROSIVE STREAM	PP °C	PVDF °C		CORROSIVE STREAM	PP °C	PVDF °C	PTFE / PFA °C
Chlorobenzene	NR	80	230	Ethyl cyanoacetate	50	25	230
Chlorobenzyl chloride	NR	50	230	Ethyl ether	NR	50	230
Chloroform	NR NR	50 50	230 230	Ethylene bromide	NR NR	135 135	230 230
Chlorohydrin (liquid) Chloropicrin	NR	50 65	230	Ethylene chloride Ethylene chlorohydrin	50	25	230
Chlorosulfonic Acid (100%)	NR	NR	230	Ethylene diamine	65	25	230
Chromic acid (50%)	50	50	230	Ethylene dibromide	25	110	230
Chromium plating solution	50	80	230	Ethylene dichloride	25	135	230
Chromium trioxide (30%)	50	80	230	Ethylene glycol	50	135	230
Chromyl chloride	50	50	230	Ethylene oxide (5% aqueous)	NR	95	230
Citric acid	110	135	230	Ethylene trichloride	NR	135	230
CLOROX 2 bleach solution (5.5% NaOCI)	65	135	230	Fatty acids Ferric chloride	65 95	135 135	230 230
Coal gas	65	110	230	Ferric chloride + HCL	80	135	230
Coconut oil	50	135	230	Ferric nitrate	95	135	230
Copper carbonate, basic	95	135	230	Ferric sulfate	95	135	230
Copper chloride (saturated)	95	135	230	Ethyl benzene (acidic)	NR	50	230
Copper cyanide (10%)	95	135	230	Ethyl chloride	NR	135	230
Copper fluoride	95	135	230	Ethyl chloroacetate	50	25	230
Copper nitrate	95	135	230	Ethyl cyanoacetate	50	25	230
Copper sulfate (saturated)	95	135	230	Ethyl ether	NR	50	230
Corn oil	80 65	135 135	230 230	Ethylene bromide	NR	135	230
Cotton seed oil Cresol	65 NR	135 65	230	Ethylene chloride Ethylene chlorohydrin	NR 50	135 25	230 230
Cresylic acid (50%)	NR	65	230	Ethylene diamine	65	25	230
Croton aldehyde	NR	50	230	Ethylene dibromide	25	110	230
Crude oil	65	135	230	Ethylene dichloride	25	135	230
Cupric Chloride (saturated)	95	135	230	Ethylene glycol	50	135	230
Cyanoacetic acid			230	Ethylene oxide (5% aqueous)	NR	95	230
Cyclohexane	NR	135	230	Ethylene trichloride	NR	135	230
Cyclohexanol	25	65	230	Fatty acids	65	135	230
Cyclohexanone	NR	25	230	Ferric chloride	95	135	230
Desoxyephedrine hydrochloride			230	Ferric chloride + HCL	80	135	230
Dextrose Di-B (3,4-dihydroxyphenol aniline)	110	135	230 230	Ferric nitrate	95 95	135 135	230 230
Di-isobutylene	50	135	230	Ferric sulfate Ferrous chloride	95	135	230
Di-isobutylketone	25	50	230	Ferrous chloride + HCL	80	135	230
Diacetone alcohol	50	25	230	Ferrous nitrate	95	135	230
Diazo salts	110	135	230	Ferrous sulfate	95	135	230
Dibutoxy ethyl phthalate			230	Fish solubles	25	65	230
Dibutyl phthalate	50	NR	230	Fluorine (gaseous)	NR	25	NR
Dibutyl sebacate		NR	230	Fluoroboric acid	65	135	230
Dichloroacetic acid	50 25	50 80	230 230	Fluorosilicic acid	65	135	230
Dichloroethane	=0	4.4.0	000	Formaldehyde (37%)	80	50	230
Dichloroethylene Dichloropropionic acid	50	110 50	230	Formaldehyde (50%) Formic acid	80 50	50 120	230
Diesel fuels	25	135	230	FREON 1 Fluorocarbons	NR	95	230
Diethanol amine	65	NR	230	Fructose	110	135	230
Diethyl amine (aqueous)	25	25	230	Fruit juices, pulp	110	95	230
Diethyl ether	NR	50	230	Fuel oil	25	135	230
Diethyl malonate		NR	230	Furfural	NR	25	230
Diethylene glycol ethers	65	95	230	Gallic acid	80	25	230
Diethylene triamine	50	50	230	Gas (manufactured)	65	135	230
Diglycolic acid Dimethanolamine	25 65	25 NR	230 230	Gas (natural)	65	135	230
Dimethyl acetamide	50	NR	230	Gasoline (leaded) Gasoline (unleaded)	25 25	135 135	230 230
Dimethyl amine (aqueous)	25	25	230	Gelatin	80	135	230
Dimethyl aniline	NR	25	230	Gin	95	95	230
Dimethyl formamide	50	NR	230	Glucose	110	135	230
Dimethyl phthalate	25	25	230	Glycerin	110	135	230
Dimethyl sulfate		25	230	Glycerol triacetate			230
Dimethyl sulfoxide		NR	230	Glycine (saturated)		25	230
Dioctyl phthalate	NR	25	230	Glycolic acid	65	25	230
Diphenyl oxide	Ñ	50	230	Heptane	NR	135	230
Dipropylene glycol methyl ether Disodium phospate	65 95	25 95	230 230	Hexane Hydrazine dihydrochloride	25	135 25	230 230
Distilled water	100	100	100	Hydriadic acid	95	135	230
Divinyl benzene		50	230	Hydrobromic acid (10%)	110	135	230
DOWANOL 1 glycol ethers	65	95	230	Hydrobromic acid (50%)	80	135	230
Epichlorohydrin	50	NR	230	Hydrochloric acid (10%)	95	135	230
Ethyl acetate	50	NR	230	Hydrochloric acid (20%)	95	135	230
Ethyl acetoacetate	NR	25	230	Hydrochloric acid (35%)	95	135	230
Ethyl acrylate	25	25	230	Hydrocyanic acid	65	135	230
Ethyl alcohol	80	135	230	Hydrofluoric acid (100%)	NR	95	230
Ethyl benzene (acidic)	NR	50	230	Hydrofluoric acid (20%)	95	120	230
Ethyl chlorocostate	NR 50	135	230	Hydrofluoric acid (30%)	95	120	230
Ethyl chloroacetate	50	25	230	Hydrofluoric acid (37%)	95	120	230


CHEMICAL RESISTANCE CHART									
CORROSIVE STREAM	PP °C	PVDF °C	PTFE / PFA °C	CORROSIVE STREAM	PP ℃	PVDF °C	PTFE / PFA °C		
Hydrofluoric acid (48%)	95	110	230	Morpholine	65	25	230		
Hydrofluoric acid (60%)	95	95	230	Naphtha	50	135	230		
Hydrofluorosilicic acid	65	135	230	Naphthalene	110	95	230		
Hydrogen	110	135	230	Nickel chloride	95	135	230		
Hydrogen chloride (dry gas)	110	135	230	Nickel nitrate	110	135	230		
Hydrogen cyanide	NR	NR	230	Nickel sulfate	95	135	230		
Hydrogen fluoride gas	25	95	230	Nicotinic acid	50	120	230		
Hydrogen peroxide (3-8%) 1	NR	95	230	Nitric acid (30%) 2	65	50	230		
Hydrogen peroxide (30%) 1	NR	95	230	Nitric acid (5-10%) 2	80	80	230		
Hydrogen peroxide (90%) 1	NR	20	230	Nitric acid (50%) 2	25	50	230		
Hydrogen sulfide (dry)	80	135	230	Nitric acid (70%-fuming)	NR	NR	230		
Hydrogen sulfide (water sol.)	80	110	230	Nitrobenzene 2	50	25	230		
Hydrogen sulfide (wet)	80 65	110 120	230 230	Nitrogen	110	135	230		
Hydroquinone Hypo (sodium thiosulfate)		120	230	Nitrogen dioxide		80	230 230		
Hypochlorous acid	65 65	25	230	Nitroglycerine Nitromethane	 50	50 50	230		
Idoform	25	25 95	230	Nitrous acid (1 0%)	NR	95	230		
lodine (1 0%)	25	95 65	230	Nitrous oxide	25	95 NR	230		
lodine (gas)		65	230	Nonyl isophenyl sulfide			230		
Isopropyl alcohol	95	65	230	o-Dichlorobenzene	NR	65	230		
Isopropyl ether	NR	50	230	o-Phenylphenol		80	230		
Isopropylamine	65	50	230	Octane	25	135	230		
Jet fuel (JP4, JP5)	25	95	230	Oils and fats	80	133	230		
Kerosene	25	135	230	Oleic acid	65	120	230		
Lactic acid (80%)	65	50	230	Oleum	NR	NR	230		
Lard oil	50	135	230	Oxalic acid	50	50	230		
Lauric acid	80	110	230	Oxygen	50	135	230		
Lauryl chloride	80	120	230	Ozone	NR	110	230		
Lauryl sulfate (saturated)	80	120	230	Palmitic acid	80	120	230		
Lead acetate	80	135	230	Perchloric acid (1 0%)	65	95	230		
Lemon oil	25	120	230	Perchloric acid (70%)	25	50	230		
Lime sulfur solution	65	95	230	Perchloroethylene	NR	135	230		
Linoleic acid	50	120	230	Petrolatum	80	135	230		
Linseed oil	65	135	230	Petroleum ether	NR	65	230		
Lithium bromide (saturated)		110	230	Petroleum oils	50	120	230		
Lubricating oil	50	135	230	Phenol (5%)	95	80	230		
m-Bromotoluene	NR	80	230	Phenol (90-100%)	65	50	230		
Magnesium carbonate	110	135	230	Phenolsulfonic acid (65%)		50	230		
Magnesium chloride	110	135	230	Phenyl glycine potassium salt			230		
Magnesium hydroxide	110	135	230	Phenylhydrazine	NR	50	230		
Magnesium nitrate	110	135	230	Phenylhydrazine hydrochloride		50	230		
Magnesium sulfate (10%-	110	135	230	Phosgene (wet or dry)	NR	80	230		
saturated) Maleic acid (1 0%)	65	120	230	Phosphoric acid (10-50%)	110	135	230		
Maleic anhydride	25	25	230	Phosphoric acid (50-85%)	110 ND	110	230 230		
Maleic anifydride Malic acid	 50	120	230	Phosphorus oxychloride	NR 50	NR			
Manganese sulfate (10% to saturated)	25	120	230	Phosphorus pentachloride Phosphorus pentoxide	50 80	95 95	230 230		
Manganese sulfate (10% to saturated)	25		230	Phosphorus trichloride	NR	95 95	230		
Mercuric chloride	80	120	230	Phosphorus-red	25	25	230		
Mercuric cyanide	65	120	230	Phosphorus-yellow	25		230		
Mercuric nitrate	80	135	230	Photographic solutions	65	135	230		
Mercury	65	135	230	Phthalic acid	25	95	230		
Methacrylic acid		50	230	Picric acid	25	25	230		
Methane	25	135	230	Plating solutions (Brass)	65	95	230		
Methane sulfonic acid	50	95	230	Plating solutions (Cadmium)	65	95	230		
Methoxy ethyl oleate			230	Plating solutions (Chrome)	50	95	230		
Methyl alcohol	95	135	230	Plating solutions (Copper)	65	95	230		
Methyl bromide	NR	135	230	Plating solutions (Gold)	65	95	230		
Methyl CELLOSOLVE 1 ethers	25	95	230	Plating solutions (Iron)	65	95	230		
Methyl chloride	NR	135	230	Plating solutions (Lead)	65	95	230		
Methyl chloroform	NR	50	230	Plating solutions (Nickel)	65	95	230		
Methyl chloromethyl ether		25	230	Plating solutions (Rhodium)	65	95	230		
Methyl cyanoacetate	50		230	Plating solutions (Silver)	65	95	230		
Methyl ethyl ketone	50	NR	230	Plating solutions (Speculum)	65	95	230		
Methyl isobutyl ketone	25	NR	230	Plating solutions (Tin)	65	95	230		
Methyl methacrylate	110	50	230	Plating solutions (Zinc)	65	95	230		
Methyl salicylate	50	65	230	Polyglycol	80	95	230		
Methyl sulfuric acid	50	50	230	Polyvinyl acetate	25	135	230		
Methyl trichlorosilane		65	230	Polyvinyl alcohol	50	135	230		
Methylene bromide		80	230	Potassium acetate	50	135			
Methylene chloride	NR	50	230	Potassium aluminum chloride	110	135	230		
Methylene iodide		95	230	Potassium aluminum sulfate 50%	110	135	230		
Milk	110	120	230	Potassium bicarbonate	110	95	230		
Mineral oil	50	135	230	Potassium borate	95	135	230		
Molasses	110	65	230	Potassium bromate	110	135	230		
mono-Bromobenzene	NR	65	230	Potassium bromide	110	135	230		
Monoethanolamine	80	NR	230	Potassium carbonate	110	135	230		


CONCOSIVE SINEAM PP °C PUD °C PEA °C CONCOSIVE SINEAM PP °C PUD °C PEA °C Deassun chlored (appool) 10 95 230 Succine add 65 65 230 Peassun chlored (appool) 10 135 230 Succine add 65 65 230 Polassun chlored (appool) 110 135 230 Sulf chlored (appool) 26 25 25 25 25 25 25 250 230 Sulf chlored (appool) 10 135 230 Sulf chlored (appool) 10 136 230 Sulf chlored (appool) 10 1		CHE		L RES	SISTANCE CHART			
Polassium chronola 95 135 230 Polassium chronola 110 135 230 Polassium hydroxide (10%) 110 135 230 Polassium hydroxide (10%) 110 135 230 Polassium hydroxide (10%) 60 NR 230 Polassium hydroxide (10%) 61 NR 230 Polassium hydroxide (10%) 63 NR 230 Polassium hydroxide (10%) 65 NR 230 Polassium parchorate 61 120 230 Polassium parchorate 65 230 Suffure acid (10%) NR NR 230 Polassium parchorate 65 120 230 Suffure acid (10%) NR 89 230 Polassium parchorate 65 120 230 Suffure acid (10%) NR 89 <th>CORROSIVE STREAM</th> <th>PP °C</th> <th>PVDF °C</th> <th></th> <th>CORROSIVE STREAM</th> <th>PP °C</th> <th>PVDF °C</th> <th>PTFE / PFA °C</th>	CORROSIVE STREAM	PP °C	PVDF °C		CORROSIVE STREAM	PP °C	PVDF °C	PTFE / PFA °C
Potassum chromate 110 135 230 Potassum chromate 110 136 230 Potassum terrocyanide 110 135 230 Potassum terrocyanide 65 120 230 Potassum tydroxide (500%) 60 NR 230 Potassum tydroxide (60.0%) 65 NR 230 Potassum terrocyanide 65 120 230 Potassum terrocyanide 66 120 230 Potassum terrocyanide 65 120 230 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-						
Polassium (stronate) 110 135 230 Polassium (stronate) 65 187 230 Polassium (stronate) 66 110 230 Polassium (stronate) 66 95 230 Polassium perchorate 66 120 230 Polassium perchorate 65 120 230								
Pitassium domonate 110 136 200 Sintur 65 120 230 Potassium ferrozyande 110 136 230 Sintur chorice 25 25 230 Potassium ferrozyande 110 136 230 Sintur diodice (ny over gas) 25 25 230 Potassium ferrozyande 100								
Polassium fornizyande (staturated) 110 135 230 Polassium fornizyande 110 135 230 Polassium fundo 80 135 230 Polassium fundosé (10%) 100 NR 230 Polassium fundosé (10%) 100 NR 230 Polassium fundosé (10%) 100 230 Polassium fundosé (10%) 100 230 Polassium fundosé (10%) 100 230 Polassium petrorale 110 135 230 Polassium petrorale 65 152 230 Polassium petrorale 65 120 230 Polassium petrorale 66 135 230 Polassium suffied 60 135 230 Polassium suffied 101 136 230 Polassium suffied 101 136 230 Proylene choolydrin 60 135 230 Proylene choolydrin 60 135 230 Proylene chool ydrin 60								
Polassum formoyanide 110 135 230 Polassum hydroxide (10%) 110 NR 230 Polassum hydroxide (10%) 110 NR 230 Polassum hydroxide (10%) 63 NR 230 Polassum hydroxide (10%) 65 NR 230 Polassum hydroxide (10%) 65 NR 230 Polassum hydroxide (10%) 65 120 230 Polassum perchorate 65 95 230 Polassum perchorate 65 120 230 Suffure acid (10%) 08 95 120 230 Versum perchorate 100 135 230 Suffure acid (10%) NR 96 230 Polassum perchorate 100 135 230 Suffure acid (10%) NR 86 230 Polassum perchorate 100 135 230 Suffure acid (10%) NR 85 230 Polassum perchorate 100 135 230 Suffure acid (10%) NR		-					-	
Polassium functide 80 135 230 Staff indicate (right) 60 230 Polassium flyctoxide (10%) 80 NR 230 Staff indicate (right) - 80 230 Polassium flyctoxide (60-90%) 80 NR 230 Staff indicate (right) NR NR 723 Polassium protocile 00 103 230 Staff indicate (right) 100 230 Polassium pertorite 66 120 230 Staffic indicate (right) 95 220 230 Polassium pertorite 66 120 230 Staffic indic (right) 95 230 Staffic indic (right) 95 230 Staffic indic (right) 95 230 Staffic indic (right) 96 230 Staffic indic (right) 96 230 Staffic indic (right) 96 230 Staffic indic (right) 80 80 230 Staffic indic (right) 80 230 Staffic indic (right) 80 230 Staffic indic (right) 80 230 Staffic indin (right)								
Potassum hydroxole (60%) 80 NR 230 Staffar troaded (liquid of gap) NR NR 230 Potassum hydroxole (60.9%) 65 NR 230 Staffar troaded (liquid of gap) NR NR 230 Potassum pertode (0.90%) 05 120 230 Staffar troaded (log (liquid of gap) NR NR 230 Potassum pertode (liquid of gap) NR 120 230 Staffar cad (log (liquid of gap) NR 120 230 Potassum pertode (liquid of gap) NR 120 230 Staffar cad (log (liquid of gap) NR 120 230 Potassum pertode (liquid of gap) NR 120 230 Staffar cad (log (liquid of gap) NR 120 230 Potassum pertode (liquid of gap) NR 120 230 Staffar cad (liquid of gap) NR 120 230 Potassum pertode (liquid of gap) NR 120 230 Staffar cad (liquid of gap) NR 120 230 Potassum getode (liquid of gap) NR 230 Staffar cad (liquid of g								
Potassum hydroxide (60-99%) 665 NR 230 Stuffur cact (199%-furing) NR NR R P22 Potassum indide 60 110 230 Stuffur cact (199%-furing) NR P20 230 Potassum performate 61 110 135 230 Stuffur cact (199%-furing) NR NR 220 230 Potassum performate 61 120 230 Stuffur cact (199%-furing) NR NR 220 Stuffur cact (199%-furing) NR NR 220 Stuffur cact (199%-furing) NR NR 220 Stuffur cact (199%) NR 66 230 Stuffur cact (199%) NR 66 230 NR 240 <td></td> <td>110</td> <td></td> <td></td> <td></td> <td></td> <td>80</td> <td></td>		110					80	
Potassum fypochlorie 1 80 95 220 Stuftin cacl (1%) 110 120 230 Potassum nitrate 80 135 230 Suffun cacl (1%) 95 120 230 Potassum percharate 65 86 230 Suffun cacl (1%) 95 120 230 Potassum percharate 65 120 230 Suffun cacl (1%) 95 120 230 Chassum percharate 65 120 230 Suffun cacl (1%) NR 80 95 230 Suffun cacl (1%) NR 80 232 Suffun cacl (1%) NR 80 230 Suff								
Potassum indide 50 110 230 Stuftic act of (1%) 96 120 230 Potassum perforate 110 135 230 Stuftic act of (1%) 95 120 230 Potassum perforate 65 95 230 Stuftic act of (1%) 95 120 230 Potassum perforate 65 120 230 Stuftic act of (1%) 95 120 230 Potassum performance 65 120 230 Stuftic act of (1%) NR 85 230 Potassum performance 65 135 230 Stuftic act of (1%) NR 86 230 Propasen 62 135 230 Stuftic act of (1%) NR 265 230 Proylene diponde 25 136 230 Stuftic act of (1%) NR 265 230 Proylene diponde 25 45 230 Timon act of (1%) 100 100 100 100 100 100 100 100 100								
Polassium printare 80 135 230 Polassium perchlorate 65 95 230 Polassium perchlorate 65 120 230 Sulfuric acid (60%) 96 120 230 Polassium perchlorate 65 120 230 Sulfuric acid (60%) 80 95 230 Profassium persufate - 50 230 Sulfuric acid (60%) NR 80 95 230 Propassium sulfate 110 135 230 Sulfuric acid (60%) NR 80 92 230 Propassium perchlorate 95 230 Sulfuric acid (60%) NR 80 92 230 Propylene chironide 25 95 230 Trainic acid 65 110 230 Proylene chironide 25 95 230 Trainic acid 65 130 230 Proylene chironide 76 76 230 Trainic acid 65 130 230								
Polassium pertorate 110 135 230 Polassium pertorate 65 92 230 Sultura acid (60%) NR 95 230 Polassium perturbate - 50 230 Prophate 100 135 230 Sulturic acid (69%) NR 80 52 230 Prophate diabotic 25 135 230 230 7ailoi acid 66 135 230 Prophete diabotic 25 95 230 7ailoi acid 65 135 230 Sailcyladehysic 25 50 230 7ailoi acid 86 230 Sailcyladehysic 25 50 230 7ailoi acid 86 230 Sailcyladehysic 10			-					
Potassum perchlorate 65 95 230 (saturated)							-	
(saturated)								
Polassium persuifate	•	65	120	230		80	95	230
Potassium sulfate 110 135 230 Potassium sulfate 80 135 230 Properte 25 135 230 Sulfuro acid (38%) NR 25 230 Propylene chorohydrin 80 NR 230 Propylene chorohydrin 80 NR 230 Propylene dichloride 25 95 230 Propylene dichloride 25 95 230 Propylene dichloride 50 NR 230 Propylene dichloride 50 NR 230 Salicylacal 50 95 230 Solicylacal 50 95 230 Solicylacal 50 95 230 Salicylacal 50 95 230 Solicylacal 50 95 230 Solicylacal 50 95 230 Solicylacal 50 95 230 Solicylacal 95 135 230 <								
Polassium sulfide 80 135 230 Propane 25 135 230 Propylace chlorohydrin 80 65 230 Propylace chlorohydrin 80 65 230 Propylace chlorohydrin 80 135 230 Propylace chlorohydrin NR 136 230 Propylace chlorohydrin NR 135 230 Propylace chlorohydrin NR 80 95 230 Salicyladenyde 25 65 230 Timony chloride NR 80 230 Silcer chall 110 135 230 Timony chloride NR 40 230 Soldura hydroxide 95 135 230 Timony chlorahydroxina 96 230 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Propent 25 135 230 Propylatent 80 NR 230 Propylaten chlorohydrin 80 NR 230 Propylaten chlorohydrin 80 NR 230 Propylaten chlorohydrin 25 95 230 Propylaten chlorohydrin 80 NR 230 Salidyradehyde 25 65 230 Salidyr chaide 95 135 230 Silver chaide 95 135 230 Sodulum bicarbonate 110 135 230 Sodulum bicarbonate 110 135 230 Sodulum bicarbonate 110 135 230 Sodulum bicarbonate		-						
Propylatachol 80 65 230 Propylene dibromlydin 80 NR 230 Propylene dibromlydin 25 95 230 Propylene glycol 50 65 135 230 Propylene glycol 50 65 230 Tarinic acid 66 110 230 Prodylene glycol 50 0.5 230 Tarinic acid 66 120 230 Salicylid exid 50 95 230 Thiony chloride NR NR 230 Salicylid exid 50 95 230 Tital unit exid NR 80 230 Solicone ol 65 120 230 Toking (pick) + kerosene (75%) NR 80 230 Solicone ol 65 135 230 Tribuly phosphate 50 230 Solum biaufate 110 135 230 Tichioroacetic acid (10%) 65 95 230 Solum biaufate 110 135 230								
Propylene chlorohydrin 80 NR 230 Propylene dichoride 25 95 230 Propylene dichoride 25 95 230 Propylene dichoride 50 NR 230 Propylene dichoride 50 NR 230 Propylene dichoride 65 135 230 Propylene dichoride 65 186 230 Salicyladehyde 25 50 230 Salicyladehyde 55 50 230 Selver (and (aueous) 25 65 230 Silver oyanide 95 136 230 Silver oyanide 95 136 230 Sodium bicarbonate 95 136 230 Sodium bicarbonate 95 136 230 Sodium bicarbonate 110 136 230 Sodium bicarbonate 110 136 230 Sodium bicarbonate 110 136 230 Sodium bicarbonate 110 <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td>-</td> <td></td>					,		-	
Propylene dihromide 25 95 230 Propylene dihromide 25 95 230 Propylene gixol 50 65 230 Prodene gixol 50 81 230 Prodene 65 NR 230 Salispideadyde 25 50 230 Salispideadyde 25 50 230 Salispideadyde 25 50 230 Salispideadyde 25 50 230 Salievin cald (aqueous) 25 50 230 Silver oranide 95 135 230 Titarium telrachloride NR 86 230 Silver oranide 95 135 230 Titarium telrachloride NR 46 230 Sodium notacite 95 135 230 Titarium telrachloride NR 45 230 Sodium notacite 95 135 230 Titarium telrachloride NR 45 230 Sodium notacite								
Propylene glycol 50 65 230 Prodylene solde 50 NR 230 Pridene 65 NR 230 Salicyldehyde 25 50 230 Salicylic acid 50 95 230 Salicylic acid 56 120 220 Salicylic acid 56 120 230 Salicylic acid 56 120 230 Saliver andle 110 135 230 Saliver andle 80 135 230 Sodium acitate 95 135 230 Sodium bacarbonate 110 136 230 Trichioroacelic acid (10%) 50 50 230 Sodium biaufite 110 136 230 Trichioroacelic acid (10%) 50 50 230								
Projeme oxide 50 NR 230 Priordene 65 NR 230 Salicyladehyde 25 60 230 Salicyladehyde 25 65 230 Sale avater 100 100 100 Sea water 100 100 100 Sea water 100 100 100 Sea solution (add (aqueous) 25 65 230 Silver cyanide 95 135 230 Silver organide 95 135 230 Sodium barzotate 95 135 230 Sodium barzotate 95 135 230 Sodium barzotatoate 95 135 230 Sodium barzotatoate 10 135 230 Sodium barzotatoate 10 135 230 Sodium carbonate 110 135 230 Sodium carbonate 110 135 230 Sodium carbonate 110 135 230	Propylene dichloride	25	95	230	Tartaric acid		120	230
Pyridene 65 NR 230 Salicyladelyde 25 50 230 Salicyladelyde 25 50 230 Salicyladelyde 25 65 230 Salicyladelyde 25 65 230 Seawater 100 100 100 Silver cyanide 95 135 230 Silver cyanide 95 135 230 Sodium catata 95 135 230 Sodium biaxion (saturated) 80 50 230 Sodium biaxifiate 110 135 230 Sodium catonate 110 135 230								
Salicyladehyde 25 50 230 Salicyladehyde 50 95 230 Sea water 100 100 100 Sea water 100 100 100 Sea water 100 100 100 Selenic acid (aqueous) 25 65 230 Silicore oil 65 120 230 Solicore organice 95 135 230 Sodium catate 95 135 230 Trichoracetic acid (10%) 65 95 230 Sodium bezroate 95 135 230 Sodium bezroate 95 135 230 Trichoracetic acid (10%) 65 96 230 Sodium bisulfate 110 135 230 Trichoracetic acid (10%) 65 80 230 Sodium carbonate 110 135 230 Trichoracetic acid (10%) 65 80 230 Sodium carbonate 110 135 230 Trinet								
Salicylic acid 50 95 230 Salicylic acid 100 100 100 100 Selenic acid (aqueous) 26 65 230 Silver organice 95 135 230 Silver organice 95 135 230 Silver organice 95 135 230 Sodium scetate 95 135 230 Sodium bicarbonate 110 135 230 Sodium bicarbonate 110 135 230 Sodium bisulfite 110 135 230 Sodium bisulfite 110 135 230 Sodium bisulfite 110 135 230 Sodium chiorate 95 120 230 Sodium chiorate 95								
Sea water 100 100 100 100 100 Iouren NR 80 230 Silicone oil 65 120 230 Toluene (25%) + kerosene (75%) NR 80 230 Silver ryanide 95 135 230 Toluene (25%) + kerosene (75%) NR 80 230 Sodar solution (saturated) 80 50 230 Tributyl oftrate 230 Sodium berzoate 95 135 230 Trichloroacetic acid (10%) 65 95 230 Sodium bisulfate 110 135 230 Trichloroacetic acid (10%) 50 50 230 Sodium bromide 110 135 230 Trichloroacetic acid (10%) 50 80 230 Sodium chorate 100 135 230 Trichloroacetic acid (10%) 50 230 Trichloroacetic acid (10%) 50 230 230 Sodium bromide 110 135 230 Trichloroacetic acid (10%) NR 230 23								
Selenic acid (aqueous) 25 65 230 Silicone all 65 120 230 Silicone all 65 135 230 Silver ryanide 95 135 230 Silver ryanide 85 135 230 Soluen intrate 110 135 230 Sodium acetate 95 135 230 Sodium bicarbonate 110 135 230 Sodium bicarbonate 110 135 230 Sodium bisulfite 110 135 230 Sodium borate (borax) 80 135 230 Sodium carbonate 110 135 230 Sodium carbonate 110 135 230 Sodium chorate 95 120 230 Sodium chorate 95 120 230 Sodium chorate 95 135 230 Sodium chorate 10 135 230 Sodium chorate 95 135 <td< td=""><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	· · ·							
Silicone oil 110 150 230 Silver nutrate 110 135 230 Silver nutrate 110 135 230 Silver nutrate 110 135 230 Sodum solution (saturated) 80 50 230 Sodum berzoate 95 135 230 Sodum berzoate 95 135 230 Sodum berzoate 95 135 230 Sodum bisulfate 110 135 230 Sodum borate (borax) 80 135 230 Sodum carbonate 110 135 230 Sodum chiorate 110 135 230 Sodum chiorate 95 135 230 Sodum chiorate 110 135								
Silver rifrate 110 135 230 Soap solution (saturated) 80 50 230 Sodium berzoate 95 135 230 Sodium berzoate 95 135 230 Sodium berzoate 95 135 230 Sodium bisulfate 110 135 230 Sodium bisulfate 110 135 230 Sodium borate (borax) 80 135 230 Sodium borate (borax) 80 135 230 Sodium bromide 110 135 230 Sodium chlorate 95 120 230 Sodium chlorate 10 95 230 Sodium chlorate 10 95 230 Sodium chlorate 100 135 230 Sodium cyanide (saturated) 80 <	· · · · · · · · · · · · · · · · · · ·		120					
Soap solution (saturated) 80 50 230 Sodium acetate 95 135 230 Sodium bicarbonate 110 135 230 Sodium bicarbonate 110 135 230 Sodium bisulfite 110 135 230 Sodium bromde 110 135 230 Sodium carbonate 110 135 230 Sodium chlorate 95 120 230 Sodium chlorate 95 120 230 Sodium chlorate 110 135 230 Sodium cyanide (saturated) 80 135 230 Sodium cyanide (saturated) 80 135 230 Sodium hydroxide (*0%) 120 230 Sodium hydroxide (*0%) 135 230 110 120 S						NR		230
Sordium acetate 95 135 230 Sodium berzoate 95 135 230 Sodium bicarbonate 110 135 230 Sodium bisulfate 110 135 230 Sodium bisulfate 110 135 230 Sodium bisulfate 110 135 230 Sodium borate (borax) 80 135 230 Sodium carbonate 110 135 230 Sodium carbonate 110 135 230 Sodium chorate (borax) 80 135 230 Sodium chorate 95 120 230 Sodium chorate 96 135 230 Sodium chorate (saturated) 80 135 230 Sodium fiche (saturated) 80 135 230 Sodium fiche (saturated) 80 135 230 Sodium hydroxide (10%) 165 NR 230 Sodium hydroxide (10%) 65 NR 230 Sodium hydroxide (
Sodium berzoate 95 135 230 Sodium bicarbonate 110 135 230 Sodium bisulfate 110 135 230 Sodium bisulfate 110 135 230 Sodium bisulfite 110 135 230 Sodium boxe (borax) 80 135 230 Sodium carbonate 110 135 230 Sodium carbonate 110 135 230 Sodium carbonate 110 135 230 Sodium chorate 95 120 230 Sodium chorate 95 120 230 Sodium chorate 110 135 230 Sodium chorate 110 135 230 Sodium choromate 110 95 230 Sodium chorate 110 95 230 Sodium choromate 110 95 230 Sodium choromate 110 135 230 Sodium foroyanide 65 135	,						-	
Sodium bicarbonate 110 135 230 Sodium bisulfite 110 135 230 Sodium bisulfite 110 135 230 Sodium bisulfite 110 135 230 Sodium borate (borax) 80 135 230 Sodium borate (borax) 80 135 230 Sodium carbonate 110 135 230 Sodium chlorate 95 120 230 Sodium chlorate 95 120 230 Sodium chlorate (saturated) 80 135 230 Sodium chlorate (saturated) 80 135 230 Sodium forcyanide 65 135 230 Sodium funcide (saturated) 80 135 230 Sodium hydroxide (10%) - 120 230 Sodium hydroxide (10%) 18 295 10 230 Sodium hydroxide (10%) 8 135 230 Vinyl dene chloride (monomer) NR 95 230								
Sodium bisulfate 110 135 230 Sodium bisulfite 110 135 230 Sodium bisulfite 110 135 230 Sodium bromide 110 135 230 Sodium bromide 110 135 230 Sodium chiorate 95 120 230 Sodium chiorate 95 120 230 Sodium chiorate 95 120 230 Sodium chiorate 10 135 230 Sodium chiorate 110 135 230 Sodium cyanide (saturated) 80 135 230 Sodium formate 110 95 230 Sodium dodecyl benzene (30%) 120 230 Sodium fluoride (staturated) 80 135 230 Sodium hydroxide (10-50%) 95 NR 230 Sodium hydroxide (50%) 95 NR 230 Sodium hydroxide (5%) 50 120 230 Sodium hydroxide (5%)								
Sodium bisulfite 110 135 230 Sodium borate (borax) 80 135 230 Sodium carbonate 110 135 230 Sodium carbonate 110 135 230 Sodium chlorate 95 120 230 Sodium chlorate 95 120 230 Sodium chlorate 110 135 230 Sodium chlorate 110 135 230 Sodium chlorate 110 135 230 Sodium dickromate 110 95 230 Sodium dickromate 110 95 230 Sodium ferricyanide 65 135 230 Sodium ferricyanide 65 135 230 Sodium hydroxide (10%) 1 & 2 95 40 230 Sodium hydroxide (50%) 95 NR 230 Sodium hydroxide (50%) 95 NR 230 Sodium hydroxide (50%) 95 NR 230 Sodium hydroxide (10%) 3 <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td>					,			
Sodium bromide 110 135 230 Sodium carbonate 110 135 230 Sodium carbonate 110 135 230 Sodium chlorite 95 120 230 Sodium chlorite 110 135 230 Sodium dichromate 110 95 230 Sodium dicke (saturated) 80 135 230 Sodium ferricyanide 65 135 230 Sodium hydroxide (<10%)	Sodium bisulfite	110	135	230				
Sodium carbonate 110 135 230 Sodium chlorate 95 120 230 Sodium chlorate 95 120 230 Sodium chlorate 110 135 230 Sodium chlorite solutions 80 120 230 Sodium chlorite solutions 80 120 230 Sodium chlorite solutions 80 120 230 Sodium chlorite solutions 80 135 230 Sodium dhoromate 110 95 135 230 Sodium forcyanide 65 135 230 Virgeatale 25 120 230 Sodium furcixde (<10%) 1 & 2	Sodium borate (borax)				Triethanolamine		50	
Sodium chlorate 95 120 230 Sodium chloride 110 135 230 Sodium chlorite solutions 80 120 230 Sodium chlorite solutions 80 135 230 Sodium flororate 110 95 235 Sodium floride (saturated) 80 135 230 Sodium hydroxide (-510%) 65 NR 230 Sodium hydroxide (-50%) 65 NR 230 Sodium hydroxide (-50%) 95 NR 230 Sodium hydroxide (-50%) 50 120 230 Sodium hypochlorite (5%) 50 120 230 Sodium hypochlorite (5%) 50 120 230 Sodium nypochlorite (5%) 50 120								230
Sodium chloride 110 135 230 Sodium chlorite solutions 80 120 230 Sodium chlorite solutions 80 135 230 Sodium dick (sturated) 80 135 230 Sodium dick (sturated) 80 135 230 Sodium ficryanide 65 135 230 Sodium ficryanide 65 135 230 Sodium ficryanide 65 135 230 Sodium fyoride (10%) 1 & 2 95 40 230 Sodium hydroxide (10.50%) 95 NR 230 Sodium hydroxide (50%) 65 NR 230 Sodium hydroxide (50%) 95 NR 230 Sodium hydroxide (50%) 95 NR 230 Sodium hydroxide (50%) 95 NR 230 Sodium hydroxide (50%) 50 80 230 Sodium hydroxide (50%) 3 50 80 230 Sodium hydroxide (50%) 80 135 230								
Sodium chlorite solutions 80 120 230 Sodium cyanide (saturated) 80 135 230 Sodium dichromate 110 95 230 Sodium dichromate 110 95 230 Sodium dichromate 65 135 230 Sodium ferricyanide 65 135 230 Sodium ferricyanide 65 135 230 Sodium fuoride (saturated) 80 135 230 Sodium hydroxide (<10%) 1 & 2							65	
Sodium cyanide (saturated) 80 135 230 Sodium dichromate 110 95 230 Sodium dichromate 110 95 230 Sodium dickyl benzene (30%) 120 230 Sodium ferricyanide 65 135 230 Sodium furcyanide 65 135 230 Sodium furcyanide 65 135 230 Sodium furcyanide 65 135 230 Sodium fydroxide (saturated) 80 135 230 Sodium hydroxide (saturated) 80 135 230 Sodium hydroxide (sof%) 65 NR 230 Sodium hydroxide (50%) 95 NR 230 Sodium hypochlorite (51%) 3 50 50 230 Sodium hypochlorite (51%) 3 50 100 100 Sodium phosphate 80 135 230 Sodium proxide 50 95 230 Sodium nitrate 80 135 230							135	
Sodium dichromate 110 95 230 Sodium dodecyl benzene (30%) 120 230 Sodium ferricyanide 65 135 230 Sodium ferricyanide 65 135 230 Sodium ferricyanide 65 135 230 Sodium fuoride (saturated) 80 135 230 Sodium hydroxide (<50%)								
Sodium dodecyl benzene (30%) 120 230 Sodium ferricyanide 65 135 230 Sodium ferricyanide 65 135 230 Sodium fuoride (saturated) 80 135 230 Sodium hydroxide (<10%) 1 & 2								
Sodium fluoride (saturated) 65 135 230 Sodium fluoride (saturated) 80 135 230 Sodium hydroxide (<10%)1 & 2			120	230	Urine			230
Sodium fluoride (saturated) 80 135 230 Sodium hydroxide (<10%)1 & 2								
Sodium hydroxide (<10%)1 & 2 95 40 230 Sodium hydroxide (<50%)								
Sodium hydroxide (>50%) 65 NR 230 Sodium hydroxide (10-50%) 95 NR 230 Sodium hydroxide (50%) 95 NR 230 Sodium hydroxide (50%) 95 NR 230 Sodium hydroxide (50%) 95 NR 230 Sodium hypochlorite (>15%) 3 50 50 230 Sodium hypochlorite (5-15%) 3 50 120 230 Sodium hypochlorite (5-15%) 3 50 80 230 Sodium nypochlorite (5-15%) 3 50 80 230 Sodium nitrate 80 135 230 Sodium nitrate 80 135 230 Sodium peroxide 50 95 230 Sodium sulfate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 65 135 230 Sodium sulfate 65 135 230 Sodi								
Sodium hydroxide (1 0-50%) 95 NR 230 Sodium hydroxide (50%) 95 NR 230 Sodium hypochlorite (>1 5%) 3 50 50 230 Sodium hypochlorite (>1 5%) 3 50 50 230 Sodium hypochlorite (5%) 3 50 120 230 Sodium hypochlorite (5-15%) 3 50 80 230 Sodium nypochlorite (5-15%) 3 50 80 230 Sodium nitrate 80 135 230 Sodium nitrate 80 135 230 Sodium peroxide 50 95 230 Sodium sulfate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 65 135 230 Stannous chlor								
Sodium hydroxide (50%) 95 NR 230 Sodium hypochlorite (>1 5%) 3 50 50 230 Sodium hypochlorite (5%) 3 50 120 230 Sodium hypochlorite (5-15%) 3 50 80 230 Sodium hypochlorite (5-15%) 3 50 80 230 Sodium hypochlorite (5-15%) 3 50 80 230 Sodium nitrate 80 135 230 Sodium nitrite 80 135 230 Sodium peroxide 50 95 230 Sodium phosphate 80 135 230 Sodium sulfate 110 135 230 Sodium sulfide 65 135 230 Stannous chloride (50%)<					, , ,			
Sodium hypochlorite (>1 5%) 3 50 50 230 Sodium hypochlorite (5%) 3 50 120 230 Sodium hypochlorite (5%) 3 50 80 230 Sodium hypochlorite (5-15%) 3 50 80 230 Sodium hypochlorite (5-15%) 3 50 80 230 Sodium nitrate 80 135 230 Sodium nitrate 80 135 230 Sodium peroxide 50 95 230 Sodium peroxide 50 95 230 Sodium phosphate 80 135 230 Sodium sulfate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfide 65 135 230 Sodium sulfite 65 135 230 Sodium sulfate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 65 135 230 Stannic chloride <								
Sodium hypochlorite (5%) 3 50 120 230 Sodium hypochlorite (5-15%)3 50 80 230 Sodium iodide 80 135 230 Sodium nitrate 80 135 230 Sodium nitrate 80 135 230 Sodium nitrate 80 135 230 Sodium peroxide 50 95 230 Sodium peroxide 50 95 230 Sodium phosphate 80 135 230 Sodium sulfate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 65 135 230 Sodium sulfite 65 135 230 Sodium sulfate (Hypo) 65 135 230 Sour crude oil 65 135 230 Stannic chloride (50%) 80 135 230 Steam NR 135								
Sodium iodide 80 135 230 Sodium nitrate 80 135 230 Sodium nitrate 80 135 230 Sodium nitrate 80 135 230 Sodium peroxide 50 95 230 Sodium peroxide 50 95 230 Sodium phosphate 80 135 230 Sodium silicate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 65 135 230 Sodium sulfate 65 135 230 Sodium sulfate (Hypo) 65 135 230 Sodium thiosulfate (Hypo) 65 135 230 Stannous chloride 110 135 230 Stannous chloride (50%) 80 135 230 Steam NR 135 230 Steam NR 135 230		50	120	230	Water-distilled	100	100	100
Sodium nitrate 80 135 230 Sodium nitrite 80 135 230 Sodium peroxide 50 95 230 Sodium phosphate 80 135 230 Sodium phosphate 80 135 230 Sodium silicate 110 135 230 Sodium sulfate 65 135 230 Sodium sulfite 65 135 230 Sodium sulfate (Hypo) 65 135 230 Sodium thiosulfate (Hypo) 65 135 230 Stannic chloride 110 135 230 Stannous chloride (50%) 80 135 230 Steam NR 135 230 Steam NR 135 230 Steamic acid 80 135 230								
Sodium nitrite 80 135 230 Sodium peroxide 50 95 230 Sodium phosphate 80 135 230 Sodium phosphate 80 135 230 Sodium silicate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 65 135 230 Sodium sulfite 65 135 230 Sodium sulfite 65 135 230 Sodium sulfite (Hypo) 65 135 230 Sour crude oil 65 135 230 Stannic chloride 110 135 230 Staam NR 135 230 Steam NR 135 230 Steamic acid 80 135 230								
Sodium peroxide 50 95 230 Sodium phosphate 80 135 230 Sodium silicate 110 135 230 Sodium sulfate 65 135 230 Sodium sulfate 65 135 230 Sodium sulfate 65 135 230 Sodium sulfate (Hypo) 65 135 230 Sour crude oil 65 135 230 Stannic chloride 110 135 230 Stannous chloride (50%) 80 135 230 Steam NR 135 230 Steam NR 135 230								
Sodium phosphate 80 135 230 Sodium silicate 110 135 230 Sodium sulfate 65 135 230 Sodium sulfite 65 135 230 Sodium sulfite 65 135 230 Sodium sulfate (Hypo) 65 135 230 Sour crude oil 65 135 230 Stannic chloride 110 135 230 Staam NR 135 230 Steam NR 135 230								
Sodium silicate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 110 135 230 Sodium sulfate 65 135 230 Sodium sulfate (Hypo) 65 135 230 Sour crude oil 65 135 230 Stannic chloride 110 135 230 Stannous chloride (50%) 80 135 230 Steam NR 135 230 Stearic acid 80 135 230								
Sodium sulfate 110 135 230 Sodium sulfide 65 135 230 Sodium sulfide 65 135 230 Sodium sulfite 65 135 230 Sodium sulfite 65 135 230 Sodium thiosulfate (Hypo) 65 135 230 Sour crude oil 65 135 230 Stannic chloride 110 135 230 Stannous chloride (50%) 80 135 230 Steam NR 135 230 Stearic acid 80 135 230					,			
Sodium sulfide 65 135 230 Sodium sulfite 65 135 230 Sodium sulfite 65 135 230 Sodium thiosulfate (Hypo) 65 135 230 Sour crude oil 65 135 230 Stannic chloride 110 135 230 Stannous chloride (50%) 80 135 230 Steam NR 135 230 Stearic acid 80 135 230								
Sodium thiosulfate (Hypo) 65 135 230 Sour crude oil 65 135 230 Stannic chloride 110 135 230 Stannous chloride (50%) 80 135 230 Steam NR 135 230 Stearic acid 80 135 230	Sodium sulfide	65	135	230		95		
Sour crude oil 65 135 230 Stannic chloride 110 135 230 Stannous chloride (50%) 80 135 230 Steam NR 135 230 Stearic acid 80 135 230					Zinc sulfate	95		
Stannic chloride 110 135 230 Stannous chloride (50%) 80 135 230 Steam NR 135 230 Stearic acid 80 135 230								
Stannous chloride (50%) 80 135 230 Steam NR 135 230 Stearic acid 80 135 230								
NR 135 230 Stearic acid 80 135 230								
Stearic acid 80 135 230								
	Stoddard solvent							

Product Drawings

Fluoro Polymer Lined Pipes and Fittings

TECHNICAL DATA SHEET - PTFE/PP/PVDF/HDPE LINED PIPE SPOOL

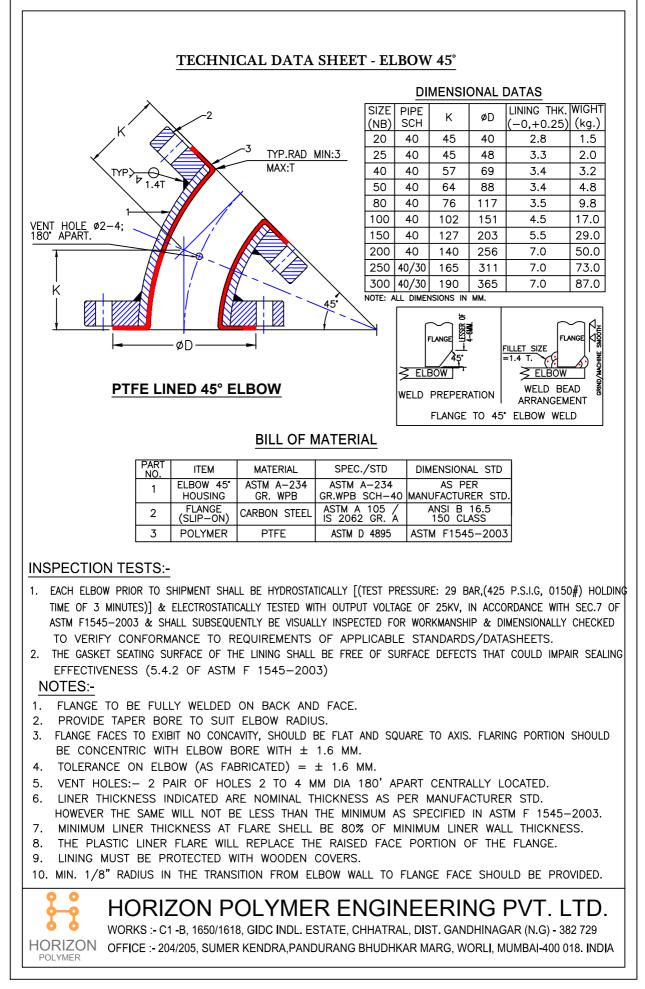
PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD					
1	SEAMLESS PIPE	CARBON STEEL	ASTM A-106 GR B SCH 40/30	ANSI B 36.10					
2	FLANGE (SLIP–ON)	CARBON STEEL	ASTM A-105 / IS 2062 GR.A	ANSI B 16.5 150 CLASS					
3	LAP COLLAR	CARBON STEEL	ASTM A-105 / IS 2062 GR.A	ASTM F1545-2003					
4	RESIN	PTFE P.P. PVDF HDPE	ASTM D 4895 ASTM D 4101 ASTM D 3222 ASTM D 3350	ASTM F1545-2003					

BILL OF MATERIAL

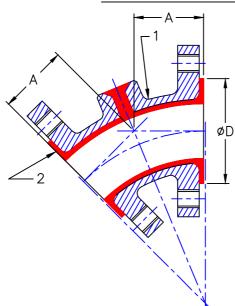
INSPECTION TESTS:-

1. EACH PIPE SPOOL PRIOR TO SHIPMENT SHALL BE HYDROSTATICALLY [(TEST PRESSURE: 29 BAR,(425 P.S.I.0, 0150#)) HOLDING TIME OF 3 MINUTES)] & ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV, IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.

2. THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003).


NOTES:-

0


POLYMER

- 1. FIXED SLIP ON FLANGE & LAPCOLLAR TO BE FULLY WELDED ON BACK AND FACE.
- 2. MIN. 1/8" RADIUS IN THE TRANSITION FROM PIPE WALL TO FLANGE OR LAP COLLAR FACE SHOULD BE PROVIDED.
- 3. FLANGE AND COLLAR FACES TO EXIBIT NO CONCAVITY, SHOULD BE FLAT AND SQUARE TO AXIS. FLARE PORTION OF LINING SHALL BE CONCENTRIC WITH PIPE BORE WITH \pm 1.6 MM.
- 4. TOLERANCE ON SPOOL (AS FABRICATED) = \pm 3.2MM.
- 5. VENT HOLES:- 2 PAIR OF HOLES 2 TO 4MM DIA 180' APART, LOCATED 150 MM FROM EACH FLANGE FACE. EACH PAIR OF HOLES TO BE ROTATED 90' TO THE OTHER.
- 6. SPOOLS LESS THAN 450 MM LONG TO HAVE ONE PAIR OF HOLES LOCATED CENTRALLY BETWEEN THE FLANGE ENDS.
- 7. WELD BUTTON WILL NOT BE PROVIDED FOR PIPE LENGTH LESS THAN 300 MM.
- 8. THE INTERIOR SURFACE OF ALL PIPES SHALL BE CLAEN&FREE OF MOLD BURRS, RUST, SCALE OR OTHER PROTRUSIONS.
- 9. LINER THIKNESS INDICATED ARE NOMINAL THICKNESS AS PER MANUFACTURER STD. HOWEVER THE SAME WILL NOT BE LESS THAN THE MINIMUM AS SPECIFIED IN ASTM F 1545-2003.
- 10. MINIMUM LINER THICKNESS AT FLARE SHALL BE 80% OF MIN.LINER WALL THICKNESS.
- 11. THE PLASTIC LINER FLARE WILL REPLACE THE RAISED FACE PORTION OF THE FLANGE.
- 12. LINING MUST BE PROTECTED WITH WOODEN COVERS.
- 13. PIPE SPOOL LESS THAN 100 MM WILL BE SUPPLIED WITH FIXED FLANGES ON BOTH ENDS OR LINED SPACER OR DISTANCE PIECE OR SOLID SPACER.

HORIZON POLYMER ENGINEERING PVT. LTD.

TECHNICAL DATA SHEET - ELBOW 45°

	DIMENSIONAL DATAS									
SIZE (NB)	A	øD	LINING THK. (-0,+0.25)	WIGHT (kg.)						
25	45	48	3.5	2.0						
40	57	69	4.0	3.2						
50	64	88	4.0	4.8						
80	76	117	4.0	9.8						
100	102	151	5.0	17.0						
150	127	203	5.5	29.0						
200	140	256	6.5	50.0						
250	165	311	6.5	73.0						
300	190	365	6.5	87.0						
NOTE: A	LL DIMENS	SIONS IN	MM.							

PFA/PP/PVDF/HDPE LINED 45° ELBOW

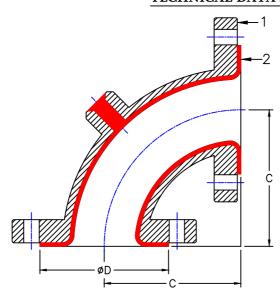
PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD						
1	ELBOW 45° CAST HOUSING	ASTM A-234 GR. WPB	ASTM A-395 60/40/18	ANSI B 16.42 / ANSI B 16.5						
		PFA	ASTM D 3307							
2	POLYMER	PP	ASTM D 4101	ASTM F1545-2003						
	FOLIMER	PVDF	ASTM D 3222	ASTM F1545-2005						
		HDPE	ASTM D 3350							

BILL OF MATERIAL

INSPECTION TESTS:-

- 1. EACH ELBOW PRIOR TO SHIPMENT SHALL BE HYDROSTATICALLY [(TEST PRESSURE: 29 BAR,(425 P.S.I.G, 0150#) HOLDING TIME OF 3 MINUTES)] & ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV, IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.
- 2. THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003)

NOTES:-


0

POLYMER

- 1. CAST ON FLANGED ENDS, AND FLANGE DIMENSIONS AS PER ANSI B 16.5 # 150.
- 2. CAST FITTINGS ARE VENTED AT THE INJECTION BOSS.
- 3. FLARE PORTION SHOULD BE CONCENTRIC WITH ELBOW BORE WITH ±1.6 MM.
- 4. LINER THICKNESS INDICATED ARE NOMINAL THICKNESS AS PER MANUFACTURER STD. HOWEVER THE SAME WILL NOT BE LESS THAN THE MINIMUM AS SPECIFIED IN ASTM F 1545-2003.
- 5. LINING MUST BE PROTECTED WITH WOODEN COVERS.
- 6. MINIMUM LINER FACE THICKNESS SHALL BE 80% OF MIN. LINER WALL THICKNESS.
- 7. MIN. 1/8" RADIUS IN THE TRANSITION FROM ELBOW WALL TO FLANGE FACE.

HORIZON POLYMER ENGINEERING PVT. LTD.

TECHNICAL DATA SHEET - ELBOW 90°

DIMENSIONAL DATAS									
SIZE	С	øD	LINING THK.						
(NB)	0	٩U	(-0,+0.25)	(kg.)					
20	75	40	2.8	1.9					
25	89	48	3.3	2.4					
40	102	69	3.4	3.9					
50	114	88	3.4	6.4					
80	140	117	3.5	12.0					
100	165	151	4.5	19.0					
150	203	203	5.5	34.0					
200	229	256	7.0	57.0					
250	279	311	7.0	91.0					
300	305	365	7.0	110.0					
NOTE: A	LL DIMENS	SIONS IN	мм.						

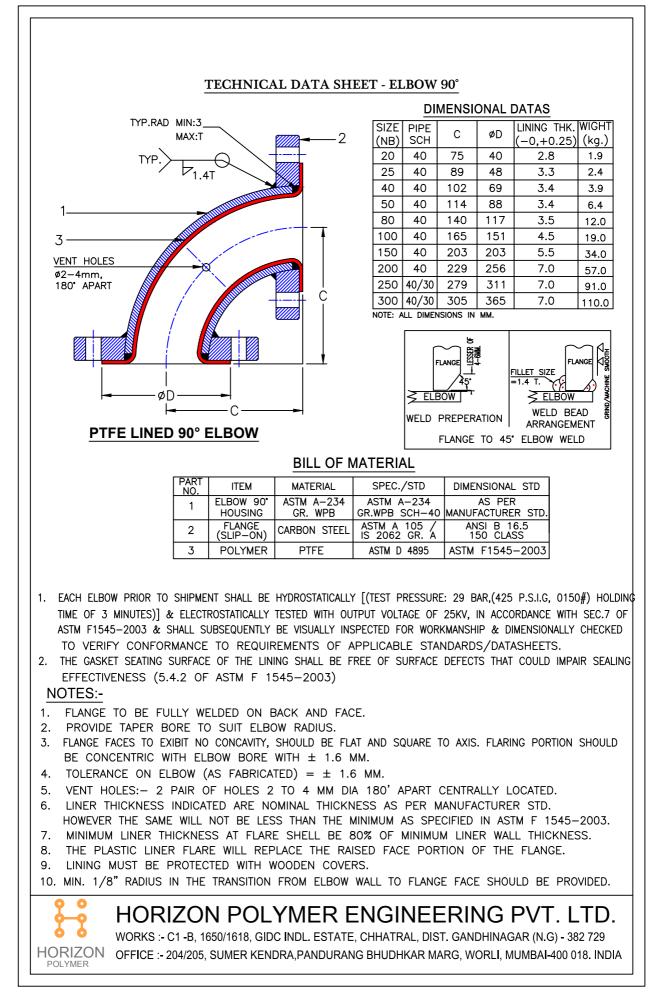
PFA/PP/PVDF/HDPE LINED 90° ELBOW

PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD
1	ELBOW 90° CAST HOUSING	DUCTILE IRON	ASTM A-395 60/40/18	ANSI B 16.42 / ANSI B 16.5
	POLYMER	PFA	ASTM D 3307	
2		PP	ASTM D 4101	ASTM F1545-2003
		PVDF	ASTM D 3222	ASTM F1545-2005
		HDPE	ASTM D 3350	

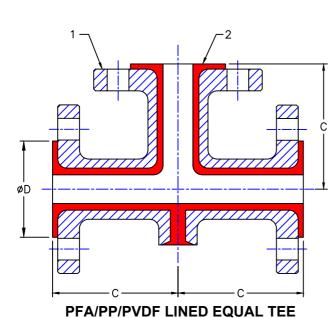
BILL OF MATERIAL

INSPECTION TESTS:-

- 1. EACH ELBOW PRIOR TO SHIPMENT SHALL BE HYDROSTATICALLY [(TEST PRESSURE: 29 BAR,(425 P.S.I.G, 0150#) HOLDING TIME OF 3 MINUTES)] & ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV, IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.
- 2. THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003)


NOTES:-

0


POLYMER

- 1. CAST ON FLANGED ENDS, AND FLANGE DIMENSIONS AS PER ANSI B 16.5 # 150.
- 2. CAST FITTINGS ARE VENTED AT THE INJECTION BOSS.
- 3. FLARE PORTION SHOULD BE CONCENTRIC WITH ELBOW BORE WITH ±1.6 MM.
- 4. LINER THICKNESS INDICATED ARE NOMINAL THICKNESS AS PER MANUFACTURER STD. HOWEVER THE SAME WILL NOT BE LESS THAN THE MINIMUM AS SPECIFIED IN ASTM F 1545-2003.
- 5. LINING MUST BE PROTECTED WITH WOODEN COVERS.
- 6. MINIMUM LINER FACE THICKNESS SHALL BE 80% OF MIN. LINER WALL THICKNESS.
- 7. MIN. 1/8" RADIUS IN THE TRANSITION FROM ELBOW WALL TO FLANGE FACE.

HORIZON POLYMER ENGINEERING PVT. LTD.

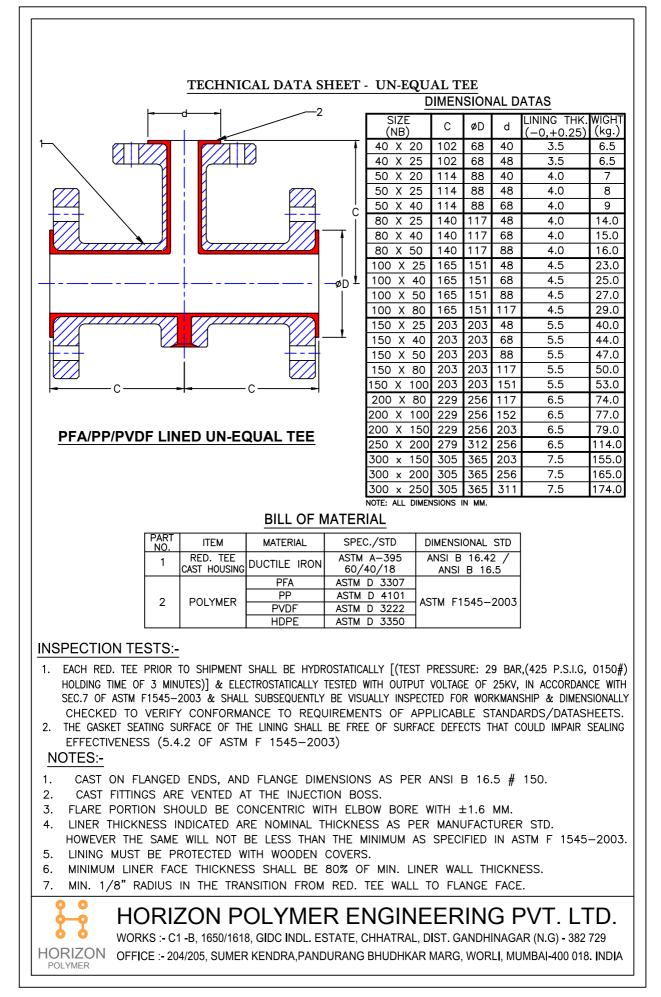
TECHNICAL DATA SHEET - EQUAL TEE

DI	DIMENSIONAL DATAS								
SIZE	В	β ØD LINING THK. (−0,+0.25)		WIGHT (kg.)					
20	75	40	3.5	4.0					
25	89	48	4.0	4.5					
40	102	69	4.0	6.4					
50	114	88	4.0	8.9					
80	140	117	4.0	18.2					
100	165	151	5.0	30.0					
150	203	203	5.5	55.0					
200	229	256	6.5	82.0					
250	279	311	6.5	132.0					
300	305	365	7.5	181.0					
NOTE: A	LL DIMENS	SIONS IN	MM.						

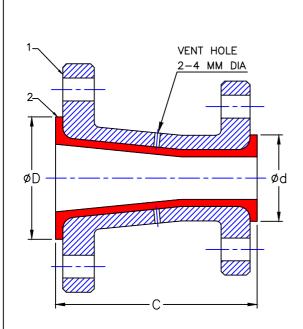
BILL OF MATERIAL

PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD
1	EQUAL TEE CAST HOUSING	DUCTILE IRON	ASTM A-395 60/40/18	ANSI B 16.42 / ANSI B 16.5
2	POLYMER	PFA	ASTM D 3307	
		PP	ASTM D 4101	ASTM F1545-2003
		PVDF	ASTM D 3222	ASTM F1545-2005
		HDPE	ASTM D 3350	

- 1. EACH EQUAL TEE PRIOR TO SHIPMENT SHALL BE HYDROSTATICALLY [(TEST PRESSURE: 29 BAR,(425 P.S.I.G, 0150#) HOLDING TIME OF 3 MINUTES)] & ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV, IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.
- 2. THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003)


NOTES:-

0


POLYMER

- 1. CAST ON FLANGED ENDS, AND FLANGE DIMENSIONS AS PER ANSI B 16.5 # 150.
- 2. CAST FITTINGS ARE VENTED AT THE INJECTION BOSS.
- 3. FLARE PORTION SHOULD BE CONCENTRIC WITH ELBOW BORE WITH ±1.6 MM.
- 4. LINER THICKNESS INDICATED ARE NOMINAL THICKNESS AS PER MANUFACTURER STD. HOWEVER THE SAME WILL NOT BE LESS THAN THE MINIMUM AS SPECIFIED IN ASTM F 1545-2003.
- 5. LINING MUST BE PROTECTED WITH WOODEN COVERS.
- 6. MINIMUM LINER FACE THICKNESS SHALL BE 80% OF MIN. LINER WALL THICKNESS.
- 7. MIN. 1/8" RADIUS IN THE TRANSITION FROM EQUAL TEE WALL TO FLANGE FACE.

HORIZON POLYMER ENGINEERING PVT. LTD.

DIMENSIONAL DATAS						
	SIZE (NB)	С	øD	ød	LINING THK. (-0,+0.25)	WIGHT (kg.)
1- VENT HOLE	40 X 20	114	68	40	3.5	3
2-4 MM DIA	40 X 25	114	68	48	3.5	3
	50 X 20	127	88	40	4.0	4
	50 X 25	127	88	48	4.0	4
	50 X 40	127	88	68	4.0	5
	80 X 25	152	117	48	4.0	6
	80 X 40	152	117	68	4.0	7
	80 X 50	152	117	88	4.0	8
	100 X 25	178	151	48	4.5	10
øD + ød	100 X 40	178	151	68	4.5	10
	100 X 50	178	151	88	4.5	11
	100 X 80	178	151	117	4.5	13
	150 X 25	229	203	48	5.5	18
	150 X 40	229	203	68	5.5	19
	150 X 50	229	203	88	5.5	20
	150 X 80	229	203	117	5.5	20
	150 X 100	229	203	151	5.5	24
	200 X 80	279	256	117	6.5	24
l ⊲ C►I	200 X 100	279	256	151	6.5	24
	200 X 150	279	256	203	6.5	35
PFA/PP/PVDF/HDPE LINED CONCENTRIC REDUCER	250 X 100	305	311	151	6.5	48
	250 X 150	305	311	203	6.5	48
	250 X 200	305	311	256	6.5	57
	300 X 200	356	365	256	7.5	77
	300 X 250	356	365	311	7.5	86
	NOTE: ALL DIMEN	ISIONS II	N MM.			

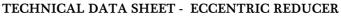
BILL OF MATERIAL

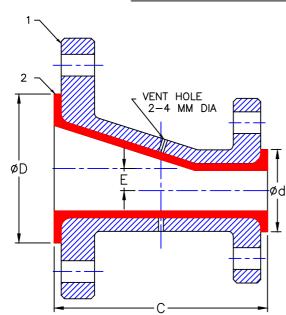
_									
	PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD				
	1	CON. RED. CAST HOUSING	DUCTILE IRON	ASTM A-395 60/40/18	ANSI B 16.42 / ANSI B 16.5				
Γ			PFA	ASTM D 3307					
	2	POLYMER	PP	ASTM D 4101	ASTM F1545-2003				
			PVDF	ASTM D 3222					
L			HDPE	ASTM D 3350					

INSPECTION TESTS:-

1. EACH CON. RED. PRIOR TO SHIPMENT SHALL BE HYDROSTATICALLY [(TEST PRESSURE: 29 BAR,(425 P.S.I.G, 0150#)) HOLDING TIME OF 3 MINUTES)] & ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV, IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.

2. THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003)


NOTES:-


HORIZON

POLYMER

- CAST ON FLANGED ENDS, AND FLANGE DIMENSIONS AS PER ANSI B 16.5 # 150. 1.
- CAST FITTINGS ARE VENTED AT THE INJECTION BOSS. 2.
- FLARE PORTION SHOULD BE CONCENTRIC WITH ELBOW BORE WITH ±1.6 MM. 3.
- LINER THICKNESS INDICATED ARE NOMINAL THICKNESS AS PER MANUFACTURER STD. 4.
- HOWEVER THE SAME WILL NOT BE LESS THAN THE MINIMUM AS SPECIFIED IN ASTM F 1545-2003. 5. LINING MUST BE PROTECTED WITH WOODEN COVERS.
- MINIMUM LINER FACE THICKNESS SHALL BE 80% OF MIN. LINER WALL THICKNESS. 6.
- MIN. 1/8" RADIUS IN THE TRANSITION FROM CON. RED. WALL TO FLANGE FACE. 7. 0

HORIZON POLYMER ENGINEERING PVT. LTD.

1_	DIMENSIONAL DATAS					
	SIZE (NB)	С	øD	ød	LINING THK. (-0,+0.25)	
	40 X 20	114	68	40	3.5	3
	40 X 25	114	68	48	3.5	3
2	50 X 20	127	88	40	4.0	4
VENT HOLE	50 X 25	127	88	48	4.0	4
2-4 MM DIA	50 X 40	127	88	68	4.0	5
	80 X 25	152	117	48	4.0	6
	80 X 40	152	117	68	4.0	7
	80 X 50	152	117	88	4.0	8
ØD	100 X 25	178	151	48	4.5	10
└	100 X 40	178	151	68	4.5	10
	100 X 50	178	151	88	4.5	11
	100 X 80	178	151	117	4.5	13
	150 X 25	229	203	48	5.5	18
	150 X 40	229	203	68	5.5	19
	150 X 50	229	203	88	5.5	20
	150 X 80	229	203	117	5.5	20
	150 X 100	229	203	151	5.5	24
	200 X 80	279	256	117	6.5	24
	200 X 100	279	256	151	6.5	24
	200 X 150	279	256	203	6.5	35
PFA/PP/PVDF/HDPE LINED ECCENTRIC REDUCER	R 250 X 100	305	311	151	6.5	48
	250 X 150	305	311	203	6.5	48
	250 X 200	305	311	256	6.5	57
	300 X 200	356	365	256	7.5	77
	300 X 250	356	365	311	7.5	86
	NOTE: ALL DIMEN	ISIONS I	N MM.			

NOTE: ALL DIMENSIONS IN M

BILL OF MATERIAL

PAR NO		MATERIAL	SPEC./STD	DIMENSIONAL STD
1	ECC. RED. CAST HOUSING	DUCTILE IRON	ASTM A-395 60/40/18	ANSI B 16.42 / ANSI B 16.5
		PFA	ASTM D 3307	
2	POLYMER	PP	ASTM D 4101	ASTM F1545-2003
	FOLIMER	PVDF	ASTM D 3222	ASTM F1545-2005
		HDPE	ASTM D 3350	

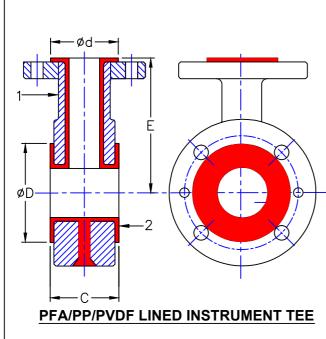
INSPECTION TESTS:-

1. EACH ECC. RED. PRIOR TO SHIPMENT SHALL BE HYDROSTATICALLY [(TEST PRESSURE: 29 BAR,(425 P.S.I.G, 0150#)] HOLDING TIME OF 3 MINUTES)] & ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV, IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.

2. THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003)

NOTES:-

0


HORIZON

POLYMER

- CAST ON FLANGED ENDS, AND FLANGE DIMENSIONS AS PER ANSI B 16.5 # 150. 1.
- CAST FITTINGS ARE VENTED AT THE INJECTION BOSS. 2
- 3. FLARE PORTION SHOULD BE CONCENTRIC WITH ELBOW BORE WITH ±1.6 MM.
- LINER THICKNESS INDICATED ARE NOMINAL THICKNESS AS PER MANUFACTURER STD. 4. HOWEVER THE SAME WILL NOT BE LESS THAN THE MINIMUM AS SPECIFIED IN ASTM F 1545-2003.
- 5. LINING MUST BE PROTECTED WITH WOODEN COVERS.
- MINIMUM LINER FACE THICKNESS SHALL BE 80% OF MIN. LINER WALL THICKNESS. 6.
- MIN. 1/8" RADIUS IN THE TRANSITION FROM ECC. RED. WALL TO FLANGE FACE. 7.

HORIZON POLYMER ENGINEERING PVT. LTD.

TECHNICAL DATA SHEET - INSTRUMENT TEE

DIMENSIONAL DATAS						
SIZE (NB)	Е	øD	ød	С	LINING THK. (-0,+0.25)	WIGHT (kg.)
25 X 25	89	48	48	51	3.5	5.8
40 X 25	102	68	48	51	4.0	7
50 X 25	141	88	48	51	4.0	8.3
50 X 40	141	88	68	76	4.0	13
80 X 25	160	117	48	51	4.0	11.4
80 X 40	160	117	68	76	4.0	18
80 X 50	160	117	88	89	4.0	22
100 X 25	179	151	48	51	4.5	15
100 X 40	179	151	68	76	4.5	25
150 X 25	205	203	48	51	5.5	19
150 X 40	205	203	68	76	5.5	37
150 X 50	205	203	88	89	5.5	36
200 X 25	237	255	48	51	5.5	28
200 X 40	237	255	68	76	5.5	43
200 X 50	237	255	88	89	5.5	48
250 X 25	264	311	48	51	6.0	34
250 X 40	264	311	68	76	6.0	55
250 X 50	264	311	88	89	6.0	62
300 X 25	318	365	48	51	6.0	48
300 X 40	318	365	68	76	6.0	84
300 X 50	318	365	88	89	6.0	85

NOTE: ALL DIMENSIONS IN MM.

BILL OF MATERIAL

PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD
1	INS. TEE CAST HOUSING	DUCTILE IRON	ASTM A-395 60/40/18	ANSI B 16.42 / ANSI B 16.5
	POLYMER	PFA	ASTM D 3307	
2		PP	ASTM D 4101	ASTM F1545-2003
2		PVDF	ASTM D 3222	ASTM F1545-2005
		HDPE	ASTM D 3350	

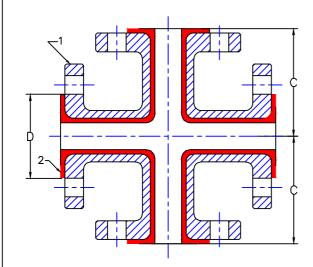
INSPECTION TESTS:-

1. EACH INS. TEE PRIOR TO SHIPMENT SHALL BE HYDROSTATICALLY [(TEST PRESSURE: 29 BAR,(425 P.S.I.G, 0150#) HOLDING TIME OF 3 MINUTES)] & ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV, IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.

2. THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003)

NOTES:-

0


HORIZON

POLYMER

- 1. CAST ON FLANGED ENDS, AND FLANGE DIMENSIONS AS PER ANSI B 16.5 # 150.
- 2. CAST FITTINGS ARE VENTED AT THE INJECTION BOSS.
- 3. FLARE PORTION SHOULD BE CONCENTRIC WITH ELBOW BORE WITH ±1.6 MM.
- 4. LINER THICKNESS INDICATED ARE NOMINAL THICKNESS AS PER MANUFACTURER STD. HOWEVER THE SAME WILL NOT BE LESS THAN THE MINIMUM AS SPECIFIED IN ASTM F 1545-2003.
- 5. LINING MUST BE PROTECTED WITH WOODEN COVERS.
- 6. MINIMUM LINER FACE THICKNESS SHALL BE 80% OF MIN. LINER WALL THICKNESS.
- 7. MIN. 1/8" RADIUS IN THE TRANSITION FROM INS. TEE WALL TO FLANGE FACE.

HORIZON POLYMER ENGINEERING PVT. LTD.

TECHNICAL DATA SHEET - EQUAL CROSS

PFA/PP/PVDF LINED EQUAL CROSS

DIMENSIONAL DATAS								
SIZE (NB)	с	D	LINING THK (-0,+0.25)	WIGHT (kg.)				
20	75	40	3.5	5.2				
25	89	48	4.0	5.4				
40	102	69	4.0	8.6				
50	114	88	4.0	13.0				
80	140	117	4.0	23.0				
100	165	151	5.0	39.0				
150	203	203	5.5	66.0				
200	229	256	6.5	99.0				
250	279	312	7.0	161.0				
300	305	365	7.2	-				

DIMENSIONAL DATAS

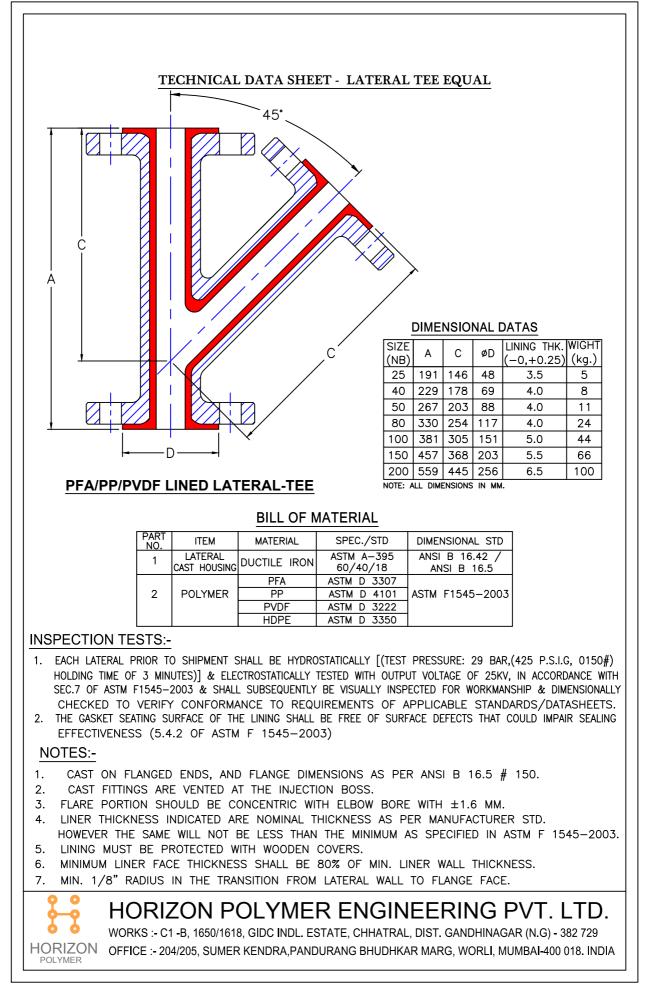
NOTE: ALL DIMENSIONS IN MM.

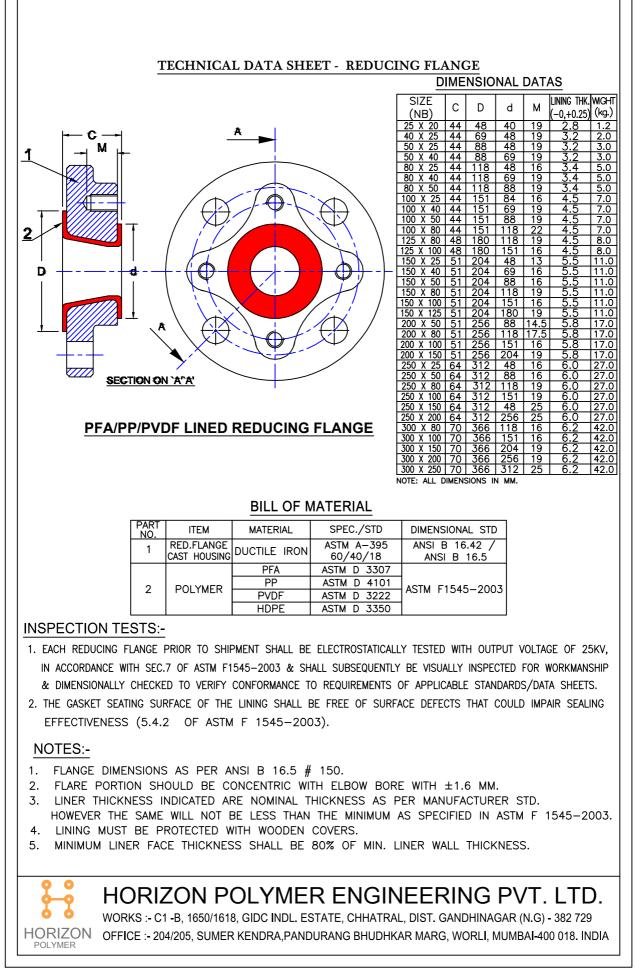
BILL OF MATERIAL

PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD				
1	CROSS CAST HOUSING	DUCTILE IRON	ASTM A-395 60/40/18	ANSI B 16.42 / ANSI B 16.5				
		PFA	ASTM D 3307					
2	POLYMER	PP	ASTM D 4101	ASTM F1545-2003				
		PVDF	ASTM D 3222					
		HDPE	ASTM D 3350					

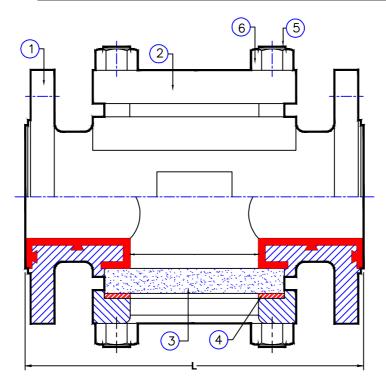
INSPECTION TESTS:-

- 1. EACH CROSS PRIOR TO SHIPMENT SHALL BE HYDROSTATICALLY [(TEST PRESSURE: 29 BAR,(425 P.S.I.G, 0150#) HOLDING TIME OF 3 MINUTES)] & ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV, IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.
- 2. THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003)


NOTES:-


0

POLYMER


- 1. CAST ON FLANGED ENDS, AND FLANGE DIMENSIONS AS PER ANSI B 16.5 # 150.
- 2. CAST FITTINGS ARE VENTED AT THE INJECTION BOSS.
- 3. FLARE PORTION SHOULD BE CONCENTRIC WITH ELBOW BORE WITH ±1.6 MM.
- 4. LINER THICKNESS INDICATED ARE NOMINAL THICKNESS AS PER MANUFACTURER STD.
- HOWEVER THE SAME WILL NOT BE LESS THAN THE MINIMUM AS SPECIFIED IN ASTM F 1545-2003. 5. LINING MUST BE PROTECTED WITH WOODEN COVERS.
- 6. MINIMUM LINER FACE THICKNESS SHALL BE 80% OF MIN. LINER WALL THICKNESS.
- 7. MIN. 1/8" RADIUS IN THE TRANSITION FROM CROSS WALL TO FLANGE FACE.

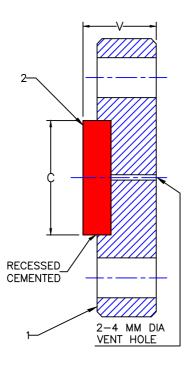
HORIZON POLYMER ENGINEERING PVT. LTD.

TECHNICAL DATA SHEET - SIGHT FLOW INDICATOR

DIMENSIONAL DATAS

	SIZE	L		ØD		WEIGHT B	BOROSILLICATE GLASS	FLOW RATE		
NB	INCH	мм	INCH	ММ	INCH	KG.	DIM. DIN 7080	CUM/HR	US Gallons/min	
25	1"	152.4	6.0	45	1.77	5.100	OD 63 x 12 THK.	27.3	31.7	
40	1 <u>1</u> "	176.0	7.0	58	2.28	7.200	OD 80 x 12 THK.	82.5	95.9	
50	2"	203.0	8.0	77	3.03	11.100	OD 100 x 15 THK.	125.8	146.2	
80	3"	241.0	9.5	100	3.94	17.400	OD 125 x 20 THK.	330.5	384.1	
100	4"	292.0	11.5	125	4.92	37.300	OD 175 x 25 THK.	515.1	598.7	
150	6"	356.0	14.0	175	6.88	58.100	OD 200 x 30THK.			
200	8"	458.0	18.0	219	8.62	127.00	OD 250 x 30THK.			

BILL OF MATERIAL


INSPECTION TESTS

ITEM	QTY.	DESIGNATION	MATERIAL	BODY HYDRO TEST	150 PSI	
1	1	BODY	DUCTILE IRON A395 - PFA		05.107	
2	2	FLANGE	DUCTILE IRON A395 - PFA	SPARK TEST	25 KV	
3	2	GLASS	BOROSILLICATE GLASS	LINING THIKNESS	3.0 MM(MIN.)	
4	2	GASKET	PTFE	FACE TO FACE DIM	ANSI B 16.10	
5	8/12	STUD	ASTM A193 B8		ANSIB16.5,CLASS 150 LBS	
6	8/12	HEXAGON NUT	ASTM A193 B8	FLANGE DIM.		

HORIZON POLYMER ENGINEERING PVT. LTD.

TECHNICAL DATA SHEET - BLIND FLANGE

DIMENSIONAL DATAS

SIZE	с	v	LINING THK	WIGHT
(NB)	U	v	(-0,+0.25)	(kg.)
15	35	14.1	3.0	0.8
20	43	15.7	3.0	0.9
25	51	17.3	3.3	1.2
40	73	20.5	3.3	2.1
50	92	22.1	3.4	3.0
80	127	26.8	3.5	5.0
100	157	26.8	4.5	6.0
150	216	28.4	5.5	11.8
200	270	31.6	6.5	18.0
250	324	33.2	6.5	26.0
300	381	34.8	6.5	35.0

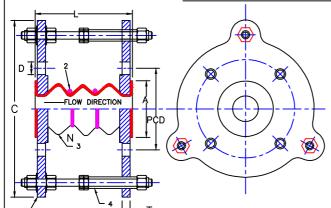
NOTE: ALL DIMENSIONS IN MM.

BILL OF MATERIAL

PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD
1	BLIND FLANGE	CARBON STEEL	ASTM A 105 / IS 2062 GR.A	ANSI B 16.5,#150
2	POLYMER	PTFE		ASTM F1545-2003

INSPECTION TESTS:-

- 1. EACH BLIND FLANGES PRIOR TO SHIPMENT SHALL BE ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV, IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.
- THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003).


NOTES:-

- 1. LINING SHOULD BE FREE OF DEFECTS, LIKE PIN HOLES, CRACKS ETC.
- 2. LINING SHOULD BE CONCENTRIC WITH O.D OF C.S FLANGE.
- 3. LINING TO BE COVERED WITH WOODEN COVERS

HORIZON POLYMER ENGINEERING PVT. LTD.

TECHNICAL DATA SHEET - BELLOW

BILL OF MATERIAL

PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD
1	FLANGE	CARBON STEEL	IS 2062	ANSI B 16.5 150 CLASS.
2	SUPPORT RINGS	SS	SS 304	AS PER MANU.STD.
3	RESIN	PTFE	ASTM D 4895	ASTM F1545-2003
4	LIMIT INDICATOR	CARBON STEEL	AS PER MANU.STD.	AS PER MANU.STD.

PTFE BELLOWS DIMENSIONAL DATA

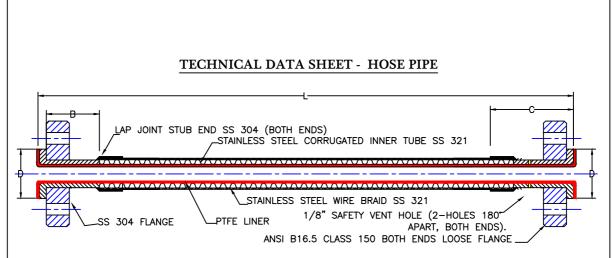
SIZE		•		DOD				LINING THK.	Ν	OVEMENT	Γ	WIGHT
(NB)		A	С	PCD	D	Т	Ν	(–0,+0.25)	TRAVEL	PARALLEL	ANGULAR	(kg.)
25	56	51	108	79.4	4X16	14	3	3.2	12	6	19	1.7
40	69	73	127	98.5	4X16	16	3	3.3	12	6	18	2.6
50	72	92	152	120.5	4X19	16	3	3.4	19	9	16	3.8
80	77	127	190	152.5	4X19	16	3	3.5	25	12	15	5,3
100	94	157	229	190.5	8X19	16	3	4.5	25	12	14	7.0
150	96	216	279	241.5	8X22	18	3	5.5	28	14	11	12.7
200	102	270	343	298.5	8X22	18	3	6.5	28	14	10	21.0
250	200	316	406	362.0	12X25.4	20	3	6.5				27.0
300	196	367	483	431.8	12X25.4	20	3	6.5				35.0
350	225	413	533	476.2	12X28.6	24	5	5.0	50	8	10	-
450	225	533	635	577.8	16X31.7	24	5	5.0	50	7	10	_
500	160	413	635	577.8	16X31.7	26	3	5.0	35	20	10	-

NOTE: ALL DIMENSIONS IN MM

INSPECTION TESTS:

- EACH BELLOW PRIOR TO SHIPMENT SHALL BE HYDROSTATICALLY [(TEST PRESSURE: 10 BAR,(145 P.S.I.G, @150#) HOLDING TIME OF 3 MINUTES)] & ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV, IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.
- 2. THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003).

NOTES:-


- 1. ANSI B 16.5 TO BE REFERED FOR PCD & NUMBER OF HOLES ONLY.
- 2. FLANGE THICKNESS, DRILLING OR TAPPING AND FLANGE OD AS PER MANU. STD.
- 3. LINER THIKNESS INDICATED ARE NOMINAL THICKNESS AS PER MANUFACTURER STD.
- HOWEVER THE SAME WILL NOT BE LESS THAN THE MINIMUM AS SPECIFIED IN ASTM F 1545-2003.
- 4. FLANGE THICK. AND DESIGN IS AS PER MANUFACTURER STANDARD TO ENABLE ASSEMBLY OF BELLOWS AND ALSO TO PERFORM WHEN INSTALLED. THEREFORE IT IS NOT POSSIBLE TO ACCOMMODATE FLANGE THICKNESS AS PER ANSI 150 CLASS.
- 5. LINING MUST BE PROTECTED WITH WOODEN COVERS.
- 6. LENGTH OF THE BELLOW SHALL BE FACTORY SET AND WILL ACCOMMODATE TRAVEL/ANGULAR MOVEMENTS.

HORIZON POLYMER ENGINEERING PVT. LTD. WORKS :- C1 -B, 1650/1618, GIDC INDL. ESTATE, CHHATRAL, DIST. GANDHINAGAR (N.G) - 382 729

HORIZON

0

OFFICE :- 204/205, SUMER KENDRA, PANDURANG BHUDHKAR MARG, WORLI, MUMBAI-400 018. INDIA

PTFE LINED CHEMICAL TRANSFER HOSE

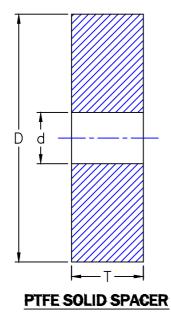
DIMENSIONAL DATAS

SIZE	в	с	D	LINER	LINING THK	FLANGE	FLANGE		LENGTH		BEND RADIUS
(NB)	Ь	0			(-0,+0.25)	TLANGL	DIM.STD.		MIN.	MAX.	(INCH.)
25	52	71	48	PTFE	2.67	SS 304	ANSI B16.5 #150	AS REQ.	150	3000	12"
40	52	78	68	PTFE	2.67	-D0-	-DO-	-D0-	150	3000	15"
50	65	90	88	PTFE	3.2	-D0-	-DO-	-DO-	150	3000	21"
80	65	90	117	PTFE	3.2	-D0-	-DO-	-DO-	200	3000	28"
100	92	104	152	PTFE	3.5	-D0-	-DO-	-DO-	300	3000	46"
150	106	129	203	PTFE	3.8	-D0-	-DO-	-DO-	350	3000	65"

NOTE: ALL DIMENSIONS IN MM.

INSPECTION TESTS:-

- EACH CHEMICAL TRANSFER HOSE PIPE PRIOR TO SHIPMENT SHALL BE HYDROSTATICALLY ((TEST PRESSURE: 20 BAR, (300P.S.I.G,@150#) HOLDING TIME OF 3 MINUTES)) & ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV,IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.
- 2. THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003).


NOTES:-

- 1. SMOOTH EXTRUDED PTFE TUBE IS USED FOR LINING THE HOSE.
- 2. ALL PROCESS CONTACT PARTS WILL BE HAVE PTFE.
- 3. LINING MUST BE PROTECTED WITH WOODEN COVERS.
- 4. MINIMUM LINER THICKNESS AT FLARE SHALL BE 80% OF MIN. LINER WALL THICKNESS.

HORIZON POLYMER ENGINEERING PVT. LTD.

TECHNICAL DATA SHEET - SOLID SPACER

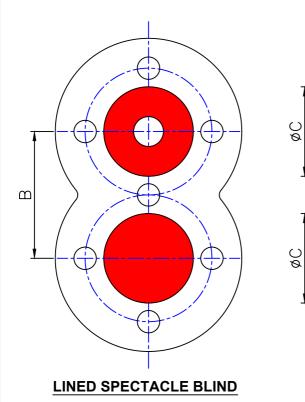
DIMENSIONAL DATAS

SIZE (NB)	D	d	Т
15	35	14	AS REQ.
20	43	16	-DO-
25	64	25	-DO-
40	83	38	-DO-
50	102	51	-DO-
80	133	76	-DO-
100	171	102	-DO-
150	219	152	-DO-
200	276	203	-DO-
250	336	251	-DO-
300	406	302	-D0-

NOTE: ALL DIMENSIONS IN MM

BILL OF MATERIAL

PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD
1.	SOLID SPACER	PTFE	ASTM A 4894 /ASTM A 4895	AS PER MANUFACTURER STD.


INSPECTION TESTS:-

1. DIMENSIONAL & VISUAL INSPECTION AS PER DATA SHEET, ITP, AND MANUFACTURER STANDARDS.

HORIZON POLYMER ENGINEERING PVT. LTD.

DIMENSIONAL DATAS

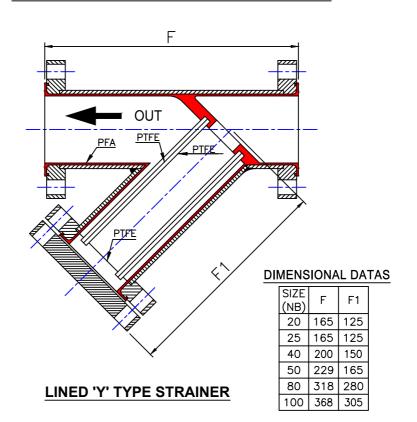
SIZE (NB)	В	С	V	LINING THK. (-0,+0.25)	
25	79.4	48	20	3.4	1.8
40	98.4	69	20	3.4	3.2
50	120.6	88	20	3.4	4.5

PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD	
1	SPECTACLE	DUCTILE IRON	ASTM A-395	ANSI B 16.5,#150	
	BLIND	DUCTILE INUN	(60/40/18)		
2	POLYMER	PFA	ASTM D 3307	ASTM F1545-2003	

BILL OF MATERIAL

INSPECTION TESTS:-

- 1. EACH SPECTACLE BLIND PRIOR TO SHIPMENT SHALL BE ELECTROSTATICALLY TESTED WITH OUTPUT VOLTAGE OF 25KV, IN ACCORDANCE WITH SEC.7 OF ASTM F1545-2003 & SHALL SUBSEQUENTLY BE VISUALLY INSPECTED FOR WORKMANSHIP & DIMENSIONALLY CHECKED TO VERIFY CONFORMANCE TO REQUIREMENTS OF APPLICABLE STANDARDS/DATASHEETS.
- THE GASKET SEATING SURFACE OF THE LINING SHALL BE FREE OF SURFACE DEFECTS THAT COULD IMPAIR SEALING EFFECTIVENESS (5.4.2 OF ASTM F 1545-2003).


NOTES:-

- 1. LINING SHOULD BE FREE OF DEFECTS, LIKE PIN HOLES, CRACKS ETC.
- 2. LINING SHOULD BE CONCENTRIC WITH O.D OF C.S FLANGE.
- 3. LINING TO BE COVERED WITH WOODEN COVERS

HORIZON POLYMER ENGINEERING PVT. LTD.

TECHNICAL DATA SHEET - 'Y'TYPE STRAINER

BILL OF MATERIAL

PART NO.	ITEM	MATERIAL	SPEC./STD	DIMENSIONAL STD	
1	SEAMLESS PIPE	CARBON STEEL	ASTM A-106 GR B SCH 40/30	ANSI B 36.10	
2	FLANGE (FLAT FACE)	CARBON STEEL	ASTM A-105 / IS 2062 GR.A	ANSI B 16.5 150 CLASS	
		PTFE	ASTM D 3307		
	RESIN	PP	ASTM D 4101	ASTM F1545-2003	
4	RESIN	PVDF	ASTM D 3222	ASTM F1343-2003	
		HDPE	ASTM D 3350		

HORIZON POLYMER ENGINEERING PVT. LTD.

HORIZON POLYMER ENGINEERING PVT LIMITED

PRODUCT FEATURES

FLUORO POLYMER LINED PIPING SYSTEMS

The information contained in this publication is intended as a guide to customers, and is freely given in good faith. Whilst every care has been taken in its preparation, the company does not accept responsibility for inaccuracies. Development is continuous. Drawings and specifications may be modified from time to time without notice. Attention is drawn to the company's conditions of sale.

HORIZON POLYMER ENGINEERING PVT LTD

Scope:

This specification defines the constituent materials, properties and performance of the products available in the Fluoroline range of lined pipe work which generally confirm to ASTM F1545. Deviation from the ASTM standard is taken to include substitution of British Standard and Indian Standard (B.I.S).

Material Specifications:

Lining Material Specifications, Range And Temperature Limit (For Lined Pipe Work):

Polymer Material	Polymer Material	Liner Colour	Product Code	ASME Class	Size Range	Temp. Limits
Poly Tetra Fluoro Ethylene (PTFE)	ASTM D1457 Type I & II, ASTM D 4894, ASTM D 4895	White	Fluoroline T	150 / 300	25 to 300	-60 ⁰ C to +200 ⁰ C
Per Fluoro Alkoxy Alkane (PFA)	ASTM D 3307 Type II	Natural White	Fluoroline T	150 / 300	25 to 300	-60 ⁰ C to +200 ⁰ C
Fluorinated Ethylene Propylene (FEP)	ASTM D 2116	White	Fluoroline F	150 / 300	25 to 300	-60 ⁰ C to +175 ⁰ C
Poly Vinylidene Fluoride (PVDF)	ASTM D3222	Black	Fluoroline K	150 / 300	25 to 300	-60 ⁰ C to +120 ⁰ C
Polypropylene Co – Polymer (PP)	ASTM D 4101	Orange	Fluoroline P	150 / 300	25 to 300	-60 ⁰ C to +100 ⁰ C

The material properties of the Polymer and Specific Gravity for PTFE should confirm to the test results as specified in the ASTM F 1545 when tested in accordance with relevant Test Methods.

In very low temperature (-29 deg C) application with Fluoroline T, consideration must be given to the suitable material of Housings. Fabricated and Cast Steel Housings are also available for low temperature service.

For information on the Chemical resistance of Fluoroline K and P systems please refer to the Factory Technical Services Department.

Housing for Pipe Spools:

Carbon Steel Pipes: Pipe material (Seamless quality) to ASTM A 106 Gr-B sizes 25 to 200NB are supplied in Schedule 40 wall thickness whereas 250NB and 300NB are supplied in Schedule 30. Dimensional standard will be in accordance to ANSI B 36.10.

Flanges: Slip-on & Lap Joint Flanges (Flat face): For ASME B 16.5 Class 150 and Class 300 with collar for Lap Joint are generally supplied from material IS 2062. Flanges in material A 105 are provided if specifically requested.

Low temperature steels and stainless steel pipes are available for which the requirement with service conditions should be referred to factory.

Fittings:

The housing materials, as a standard for all fittings are generally of Ductile Iron Castings conforming to ASTM A 395 and or its Indian equivalent. Alternatively, steel housings are also fabricated using pipe, flanges and plate material if necessary.

Elbows lined with PTFE are also supplied made from pipe material with fixed flanges welded on both ends.

Housing material for Reducing Flanges will be of IS 2062 Gr. A - Plate material.

Housing material for Lined Spacers will be from IS 2062 Gr.-A - Plate material only.

Steel castings to ASTM A216 Gr. WCB, stainless steel Castings and fabrications can be made available for which the requirement with service conditions should be referred to factory.

HORIZON POLYMER ENGINEERING PVT LTD

Dimensional Standard:

Lined Pipe work is generally to ANSI B 31.3 with minor modifications to suit the lining process.

S. G. Iron Fittings with Cast Iron flanges are dimensioned to B 16.42

Tolerance for Pipe Fabrication, flanges and fittings shall be as stated in ASTM F 1545

Lined fittings (Plastic flare to plastic flare) shall conform to the nominal centre to face dimensions as specified in relevant standards with the applicable tolerances. Dimensional details for each fitting are covered in the relevant data sheet available as a part of this specification.

Construction:

1. Pipe spools are fabrication to proprietary drawings covering standard spool, minimum spool lengths by Nominal Bore size and Jacketed pipes.

2. Approved weld procedures for flange attachment & setting are adopted and welding carried out by qualified welders.

3. When fabricating pipes and fittings, end connection shall be manufactured to provide a minimum 1/8 inch radius or chamfer in the transition from pipe wall to flange or lap face. This radius or chamfer is required to reduce stress concentration in the plastic liner as it is flared or moulded over the flange face or stub end.

4. All pipe spools have lap joint flange (flange rotates on pipe) at one end and fixed flange at the other end.

5. The interior surfaces of all Housings shall be clean and free of burrs, rust, scale or other protrusions which may be adversary affect the integrity or performance of the lining.

6. As a standard Lined pipes are manufactured up to a maximum length of 3 mtr in all sizes and for all liner material. Longer lengths can be made available for which the factory has to be consulted.

7. All fittings are with fixed either cast on or welded.

8. All Pipes & Fittings must be vented in compliance with ASTM F 1545. Vent Systems are designed to release any gases between the liner and housing-preventing buildup of those gases which could premature failure of the lined system.

9. Precaution should be taken to see that these Vent holes drilled (2mm Dia to 4mm Dia) in to the metal housing prior to lining. Two pairs of vent holes for each pipe spool 180 deg. Apart and located 150mm from each flange face are provided. Each pair of these vent holes are drilled rotated 90 deg. to each other. For pipe assemblies 500mm or less only one pair of vent holes located between the flanges are required. Cast fittings (lined by injection molding) are vented at the injection boss. In addition these vent holes serve as weep holes in the event the liner is damaged. Vent hole extensions are necessary in the event pipes and fittings are required to be insulated or if the emission of vented materials are to be kept away from the flange bolts.

10. All lining shall fit snugly into the pipe and fitting housings. Any bulges in lining or indication of poor contact with the housing shall be a cause for rejection.

11. Plastic pipe liner shall be locked into the pipe housing using the thermo - lock process to provide dimensional stability which would be necessary as the pipe would have to withstand the thermal cyclic conditions and also to provide maximum vacuum resistance at elevated temperatures.

12. The gasket seating surface of the lining shall be free of surface defects that would impair sealing effectiveness. Scratches, dents, nick or tool marks on the seating surface shall not be deeper than 10% of the face thickness. Minimum liner thickness on the flare face shall be 80% of minimum liner wall thickness.

Product Testing:

Hydrostatic Test: All class 150 pipe assemblies and fittings are subjected to a 29 bar (425 psig) and for class 300 to 46.5 bar (675 psig) hydrostatic pressure test at room temperature using clean water. The procedure and duration of this test is to be carried out as laid down in ASTM F 1545. The pressure gauge and vent holes in the pipe and fitting housing are to be observed throughout the pressure test for any evidence of leakage which is a cause for rejection.

HORIZON POLYMER ENGINEERING PVT LTD

Electrostatic Test: The liner of all completed assemblies is subjected to 25KV non-destructive electrostatic test which is carried out to detect any defects like pipe holes, porosity, cracks etc. in the liner. A visible and audible spark occurs at the probe section when electrical contact is made with metal housing because of the defect in the liner. This shall be a cause for rejection.

Painting:

As a standard, the exterior surface of all pipes and fittings and accessory items are painted using a suitable red oxide primer. In addition a one inch wide colour code band is painted on the periphery of the pipe or fitting using enamel paint. For pipes this band is provided near the fixed flange end of the pipe. The colour band serves as an identification of liner material as stated below:

Lining material	Colour band
PTFE/PFA/FEP	Black
PVDF	Blue
РР	White

Special paints if required are to be specified at the time of making the offer.

<u>Marking:</u>

In general, all pipes and fittings will carry the following marking hard stamped on the flange OD.

- i) Manufacturer's Name
- ii) Liner Material Identification
- iii) Nominal Pipe Size :

iv) Work Order No. :

For Pipe Spools the size and length of the pipe is marked on the run of the pipe using an indelible black ink. Further identifications can be provided if requested in the order.

: HPEL

: PTFE / PFA / FEP / PVDF / PP

End Cover:

All lined pipe work will have their flare covered with either wooden or plastic covers. These covers are not to be removed except at the time of installation. In case inspection is carried out at site on receiving the material the end covers are to be immediately placed back after inspection is completed. Failure to do this may result in damage or deformation of the flare face.

Storage:

Lined pipe work should not be stored in open are and preferably on level ground. Field flare pipes should

not be stored outside and also for considerable period of time. This could cause the liner to get jammed

with the pipe housing and make it difficult to slide/move the liner inside the pipe.

HORIZON POLYMER ENGINEERING PVT LTD

Material Certification:

Pipes are procured correlating material with Mill's Test Certificate. Flanges and Castings are procured from approved suppliers against certificates endorsed by manufacturer's/foundries' independent Quality Controller. Liner and Polymer are procured against manufacturer's Certificate of conformity or Certificate of Analysis. For all suppliers, originating from our works we will provide our internal Test Certificate certifying the material specifications and tests carried out on lined pipe work. Further certificates relating to Housing and Lining material will not form a part of documentation unless specifically requested and agreed by us. **Pressure/Temperature Ratings:**

	150	#	300 #		
Temperature, ⁰ C	PSI (g)	Bar (g)	PSI (g)	Bar (g)	
20	250	17.2	450	31	
50	244	17.0	425	29.3	
100	235	16.0	390	26.9	
150	215	14.8	345	23.8	
200	200	13.9	295	20.3	

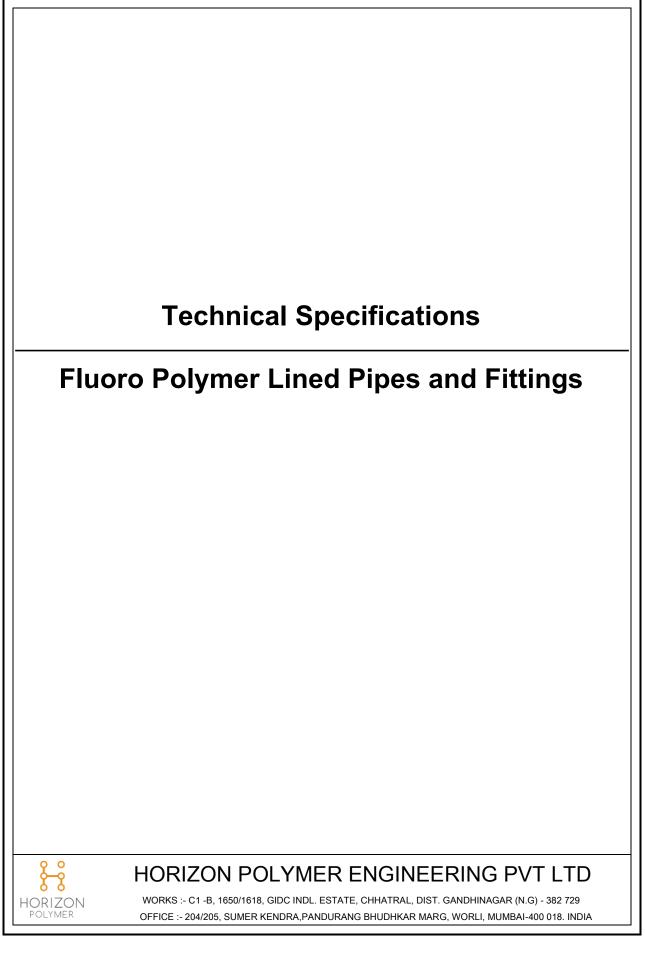
Pressures rating for # 150 dimensioned fittings are based on the rating in ANSI B 16.5 Pressure ratings for # 300 dimensional fittings are based on the rating in ANSI B 16.5 #300, down rated to compensate for the decrease in mechanical properties at elevated temperature of the lining materials.

Vacuum / Temperature Rat	tings:
--------------------------	--------

	-	-								
Materi al	Temp. ⁰C	25	40	50	80	100	150	200	250	300
PTFE	20	Full								
	100	Full								
	175	Full								
	230	Full	Full	Full	Full	Full	Full			
PVDF	20	Full								
	80	Full	Full	Full	Full	Full				
	138	Full	Full	Full	Full	Full				
PP	20	Full								
	93	Full								

Limits of vacuum service are established by methods which comply with the relevant ASTM F methods for lined pipes.

Liner Thickness Details:


Size	For	Pipes	Flare	Average	PTFE Liner	PVDF Liner	PP Liner	Fittings PFA / PVDF / PP
,NB	Std	Min.	Dia,	ID,mm	Thickness,	Thickness,	Thickness,	/ FEP –
,110	length,	length,	mm	10,1111	mm (min.)	mm (min.)	mm (min.)	Thickness
	mm	mm						(mm)
20	1000	90	43	17	2.50	NA	NA	2.50
25	3000	90	48	21	3.30	3.15	3.80	3.50
40	3000	95	70	35	3.40	3.15	4.00	4.00
50	3000	110	90	46	3.40	3.15	4.40	4.00
80	3000	120	118	72	3.50	3.15	4.40	4.00
100	3000	125	152	97	4.50	3.60	5.30	5.00
150	3000	140	210	145	5.50	4.00	5.60	5.50
200	3000	145	267	198	6.00	4.00	5.60	6.50
250	3000	155	316	249	6.50	5.60	6.30	6.50
300	3000	160	367	299	6.50	5.60	6.30	6.50

For PTFE Lined pipes of sizes 150NB and above, factory should be consulted for selection of liner with optimum thickness which would be most ideal for pipes to operate under partial/full vacuum conditions.

HORIZON POLYMER ENGINEERING PVT LTD

<u>Standard Eng</u>	HORIZON POLYMER ENGINEERING (P) LIMITED uiry Specification for PTFE / PFA Lined Pipes & Fittings as per ASTM F 1545 – 97
Service Condition:	
Media Handled	:
Operating Temp	:
Operating Pressure	:
Vacuum	:
Presence of Solid pa	rticles, if any :
Material of Constru	ction:
Pipes :	ASTM A 106 Gr. B Sch. 40 up to 200 NB & Sch. 30 for 250 NB & 300 NB
Flange / Collar :	ASTM A 105 (N) / IS 2062
Fittings :	Ductile Iron ASTM A 395
Lining :	PTFE – Pipes and PFA – Fittings
PTFE	
The lining is made colour is white, by paste ext pre calibrated form in stress-neutral and fir	from virgin PTFE (Polytetrafluoroethylene) without any pigments — its truded method, conforming to ASTM D 4895. The material is inserted in a not the steel parts and then thermally stress relieved, thus guaranteeing a m fitting in the steel part.
Tensile strength	: 3500 PSI
Elongation :	300%
Specific gravity :	$2.15 - 2.19 \text{ g/cm}^3$
PFA	
	I is pure PFA (Perfluoroalkoxy) without any pigments - the colour is white to ASTM D 3307 Type II
The minimum physic	al data according to ASTM F1545 is:
Tensile strength: 38	800 PSI
Elongation	: 300%
Qualification tests:	
High temp test, Low	temp test, Steam and cold water test, Vacuum test as per ASTM F 1545
HORIZON W	ORIZON POLYMER ENGINEERING PVT LTD /ORKS :- C1 -B, 1650/1618, GIDC INDL. ESTATE, CHHATRAL, DIST. GANDHINAGAR (N.G) - 382 729 FFICE :- 204/205, SUMER KENDRA, PANDURANG BHUDHKAR MARG, WORLI, MUMBAI-400 018. INDIA

Dimensional Standard:

Pipes:ASME B 36.10Fittings:ASME B 16.42 / ASME B 16.5, 150 #Flanges:ASME B 16.5 ASA 150 #Note:The Pipe, Flanges & Collar thickness in mm will be as under along withAverage ID after Lining

Size, NB	20	25	40	50	80	100	150	200	250	300
Pipe	2.87	3.38	3.68	3.91	5.49	6.02	7.11	7.04	9.30	10.40
Flange	12.5	14.3	17.5	19.0	23.8	23.8	25.4	28.6	30.2	31.7
Collar	11	12	12	14	16	18	18	20	22.5	22.5
Average ID after	17.0	21.0	35.0	46.0	72.0	97.0	145.0	198.0	249.0	299.0

Minimum Liner Thickness (mm):

Size, NB	20	25	40	50	80	100	150	200	250	300
PTFE	2.50	3.30	3.40	3.40	3.50	4.50	5.50	6.00	6.50	6.50
PFA	3.00	4.00	4.00	4.00	4.00	5.00	5.50	6.50	6.50	7.00

Vacuum / Temperature Ratings

Temp	25	40	50	80	100	150	200	250	300
20° C	Full								
100° C	Full								
175° C	Full								
230° C	Full	Full	Full	Full	Full	Full			

Pressure / Temperature Ratings:

	150	#	300 #			
Temperature	PSI (g)	Bar (g)	PSI (g)	Bar (g)		
20 °C	250	17.2	450	31		
50 ⁰C	244	17.0	425	29.3		
100 °C	235	16.0	390	26.9		
150 °C	215	14.8	345	23.8		
200 ⁰ C	200	13.9	295	20.3		
HORIZON POLYMER ENGINEERING PVT LTD						
HORIZON	*	, GIDC INDL. ESTATE, CHHA KENDRA,PANDURANG BHUE	,	()		

HORIZON POLYMER ENGINEERING PVT LIMITED

ANNEXURE

Table-A

Description	Flanges	Hydro Test	Electrostatic Test at 25 KV
Lined Pipe and fittings	# 150	29 bar (425 psig)	Yes
	# 300	46.5 bar (675 psig)	Yes
	PN 16	24 bar (350 psig)	Yes
	PN 10	15 bar (220 psig)	Yes
	BS 10 "E"	21 bar (300 psig)	Yes
Reducing and blind flanges, lined spacers			Yes
Lined dip pipes, sparkers, thermo wells			Yes
Flexible couplings R6904 2 convolutes	25-250 NB	17 bar (240 psig)	No.
Expansion joints R6905 3 convolutes	25-150 NB	15 bar (220 psig)	No
Expansion joints R6905 3 convolutes	200, 250 NB	12.5 bar (180 psig)	No
Bellows R 6906 5 convolutes	25 – 250 NB	10.5 bar (150 psig)	No.
Sight glasses	All ratings	10 bar (145 psig)	Yes
Transfer hoses	All ratings	21 bar (300 psig)	Yes

HORIZON POLYMER ENGINEERING PVT LTD

Tolerances:

Tolerance of lined pipes & fittings are defined according to ASTM F 1545. The liner thickness may vary approximately 10%. This applies especially to the area of the flares, due to the flaring

process.

Description	Tolerance
Pipe Length	± 2.50 mm
Fixed Flange Bolt Alignment	+ 1.00 mm
Flange Perpendicularity With Pipe	5.00 mm / Meter Of Diameter

External Coating

All carbon steel parts are sandblasted according to SA 2 1/2

All PTFE-lined carbon steel products are painted with an epoxy-zinc-chromate primer to protect

them from corrosion.

Inspection:

Rubber Roller Test of PTFE Liner.

Mechanical Properties of PTFE Liner, viz. Tensile Strength, Elongation & Specific Gravity

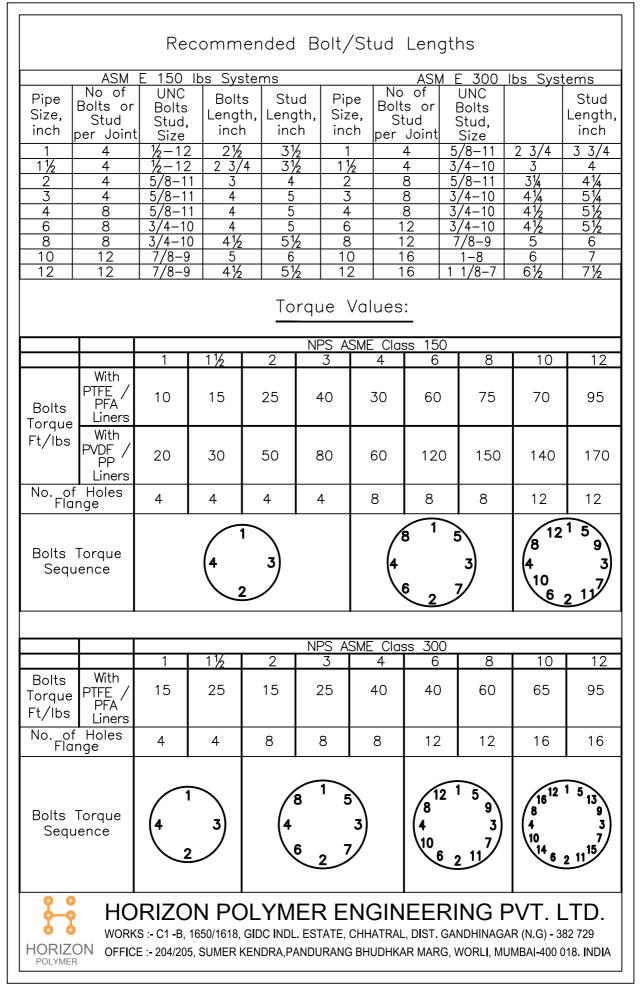
Visual & Dimensional Check

Hydrostatic Test is carried out at 29 bar after lining.

Electrostatic Test at 25000 Volts will be carried out on all non – conductive lined pipes and fittings.

Protective covers

Flares are protected with a water proof plywood cover or plastic cap.



HORIZON POLYMER ENGINEERING PVT LTD

	НО	RIZON P	OLYMER E	NGINEER	RING PRI	VATE L	MITED				
	SPECIFICA	FION - PTF	E / PFA LIN	NED PIPES	& FITTIN	GS AS P	ER ASTI	MF 1545	- 97		
Α	Material of Co	onstruction	า:								
	Pipes	ASTM A 1	06 Gr. B Sch	. 40 up to 20	0 NB & Sch	. 30 for 25	0 NB & 30	00 NB			
	Flanges	IS 2062 Gi	: A / ASTM A	105							
	Fittings	Ductile Iror NB Elbows	n Conforming	To ASTM A	395 & AST	M A 234 (Gr WPB fo	or 25 NB to	100 NB		
	PTFE	ASTM [01457 Type I /ASTM D		1894	Colour	White	Temp. Limit	-30 [°] C to +200 [°] C		
	PFA		ASTI	M D 3307 Ty	pe II	Colour	Natural White	Temp. Limit	-30°C to +200°C		
В	Dimensional	Standard	S								
	Pipes	ANSI B 3	6.10								
	Ductile Iron	ANSI B 1	6.42 / ANSI E	3 16.5							
	Flanges	ANSI B 1	6.5 ASA 150	#							
	Lining		1545 Standar								
С	Nominal	g Thickn	ess as per	Manufactu	rer's Desi	gn and T	olerance):			
	Pipes Fittings	NB: 4.50 n	0 mm; 25 NE nm; 150 NB: 30 NB: 4.00 m	5.50 mm; 20	0 NB: 6.00 I	mm; 250 /	300 NB: 6	6.50 mm			
)					5 ND. 5.50	11111, 2007	200 ND 0.	00 11111		
	Sp. Gravity	2.15 to 2.1									
D	INSPN AFTER	LINING	In House	TPI		IV	ecnanica	l Prop erti	es:		
	Hydro Test	At 29 Bar	100%	10%				PTFE			
	Spark Test	At 25 KV	100%	10%	Tensile	Strength,	PSI (min)	3500	3800		
	Dimensions	As per AN	SI B 16.5 / AS	6.5 / ASTM F 1545 Elongation, % (min) 300 300							
	All pipes have I available up to All fittings are s Suitable vent h All pipe work w	a Length of upplied with oles are pro	6 mtrs max fixed cast o vided for all	n or welded pipes & fittir	flanges on igs.	ly.					
	Material test ce										
	External Surfac						of Pod O	wide Drim	or		
F						one coal			ei		
Г	Vacuum / Tem	-	Ratings:	50	00	100	150	200	250		
	Temp. 0C 20	25 Full	40 Full	50 Full	80 Full	100 Full	150 Full	200 Full	250 Full		
	100	Full	Full	Full	Full	Full	Full	Full	Full		
	175	Full	Full	Full	Full	Full	Full	Full	i un		
	230	Full	Full	Full	Full	Full	Full				
G	Pressure / Ter							1			
_			150#	1			300#	ł			
	Temperature	PSI		Bar (g)		PSI (Bar (g	1)		
÷	200 C	25		17.2		450	0/	31.			
	500 C	24		17.0		425		29.			
	1000 C	23	35	16.0		390		26.			
	1500 C	21	5	14.8		345		23.			
	2000 C	20	00	13.9		295		20.	3		
	RIZON	WORKS :- C1 -	DN POL B, 1650/1618, GI 205, SUMER KEN	DC INDL. ESTA	TE, CHHATRAL	, DIST. GANI	DHINAGAR (I	N.G) - 382 729	9		

Α	r	CIFICATIO			5 & FIT	INGS A	S PER AS	IM F 154	5 - 9/
	Pipes	ASTM A 1	06 Gr. B Scł	n. 40 up t	o 200 Ni	3 & Sch.	30 for 250	NB & 300	NB
	Flanges	IS 2062 G	ir a / Astm	A 105					
	Fittings	Ductile Ir	on Casting C	Conformin	g To AS⁻	ГМ A 395	;		
	PP (Polymer)	ASTM [0 4101		Colour	Orange	Temp. Limit.	-20°C to + 105°C
В	DIMENSIO	NAL STAND	ARDS:						
	Pipes	ANSI B 36	5.10						
	Ductile Iron Castings	ANSI B 16	5.42 / ANSI	B 16.5					
	Flanges		5.5 ASA 150						
	Lining		545 Standar						
С	NOMINAL	LINING TH	CKNESS A	S PER M	ANUFA	CTURER	"S DESIG	N & TOLE	RANCE:
	Pipes	25 NB to 80 N mm	B: 3.15 mm;	100 NB:	3.60 mm	; 150 NB	/ 200 NB: 4	.00 mm; 2	50 B: 5.60
		25 NB TO 80		-	5.00 mn	-			
D	INSPN AFT	ER LINING	In-House	TPI		Me	chanical P	roperties	5:
	Hydro Test	At 29 Bar	100%	10%	Tensi	e Streng	th, PSI (mir	n) 500	00
	Spark Test		100%	10%		-	· 、		
	Dimensions GENERAL I	•	I B 16.5 / AS	TM F 1545	5 Ele	ongation,	, % (min)	8	
	to a Length o All fittings are	e lap joint flang f 6 mtrs max. e supplied with holes are prov	fixed cast on	or welded	flanges		end. Lined p	pipes are a	vailable up
		will be supplie	•		-	rs to prot	ect the flare	faces.	
		certificates will				•			
	Material test							de Primer.	
		aces of All Pipe	es and Fittings	s will be pe					
F	External Surfa	aces of All Pipe	URE RATIN	•			1		
F	External Surfa VACUUM / Temp. °C	aces of All Pipe TEMPERAT 25	URE RATIN 40	IGS: 50	80	100	150	200	250
F	External Surfa VACUUM / Temp. °C 20	aces of All Pipe TEMPERAT 25 Full	40 Full	I GS: 50 Full	Full	Full	150 Full	200 Full	250 Full
F	External Surfa VACUUM / Temp. °C 20 80	aces of All Pipe TEMPERAT 25 Full Full	40 Full Full	I GS: 50 Full Full	Full Full	Full Full			
F	External Surfa VACUUM / Temp. °C 20 80 93	aces of All Pipe TEMPERAT 25 Full Full Full	URE RATIN 40 Full Full Full	IGS: 50 Full Full Full	Full	Full			
	External Surfa VACUUM / Temp. °C 20 80 93 PRESSURE	TEMPERAT 25 Full Full Full / TEMPERA	40 Full Full	IGS: 50 Full Full Full	Full Full	Full Full Full	Full		
	External Surfa VACUUM / Temp. °C 20 80 93 PRESSURE Temperature	TEMPERAT 25 Full Full Full / TEMPERA	URE RATIN 40 Full Full Full TURE RAT 150	IGS: 50 Full Full Full	Full Full Full	Full Full Full	Full	Full 300	
	External Surfa VACUUM / Temp. °C 20 80 93 PRESSURE Temperature 20° C	TEMPERAT 25 Full Full / TEMPERA PSI 2 PSI	JRE RATIN 40 Full Full Full Full TURE RAT 150 (g) 50	IGS: 50 Full Full INGS: Bar	Full Full Full (g) 17.2	Full Full Full	Full	Full 300	Full Bar (g) 31
	External Surfa VACUUM / Temp. °C 20 80 93 PRESSURE Temperature 20° C 50° C	TEMPERAT 25 Full Full / TEMPERA PSI 2 2	JRE RATIN 40 Full Full Full TURE RAT 150 (g) 50 14	IGS: 50 Full Full INGS: Bar 17	Full Full Full (g) 17.2	Full Full Full	Full [(g) 450 425	Full 300 E	Full Bar (g) 31 9.3
	External Surfa VACUUM / Temp. °C 20 80 93 PRESSURE Temperature 20° C 50° C 100° C	TEMPERAT 25 Full Full / TEMPERA PSI 2 2 2 2 2 2	JRE RATIN 40 Full Full Full TURE RAT 150 (g) 50 14 35	IGS: 50 Full Full INGS: Bar	Full Full Full (g) 17.2	Full Full Full	Full (g) 450 425 390	Full 300 2 2	Full Bar (g) 31 9.3 6.9
	External Surfa VACUUM / Temp. °C 20 80 93 PRESSURE Temperature 20° C 50° C 100° C 150° C	Aces of All Pipe TEMPERAT 25 Full Full / TEMPERA PSI 2 2 2 2 2 2 2 2 2 2 2 2 2	JRE RATIN 40 Full Full Full Full TURE RAT 150	IGS: 50 Full Full INGS: Bar 17	Full Full (g) 17.2 14.8	Full Full Full	Full (g) 450 425 390 345	Full 300 [2 2 2 2	Full Bar (g) 31 9.3 6.9 3.8
	External Surfa VACUUM / Temp. °C 20 80 93 PRESSURE Temperature 20° C 50° C 100° C	Aces of All Pipe TEMPERAT 25 Full Full / TEMPERA PSI 2 2 2 2 2 2 2 2 2 2 2 2 2	JRE RATIN 40 Full Full Full TURE RAT 150 (g) 50 14 35	IGS: 50 Full Full INGS: Bar 17	Full Full Full (g) 17.2	Full Full Full	Full (g) 450 425 390	Full 300 [2 2 2 2	Full Bar (g) 31 9.3 6.9

	H		POLYMER	ENGINE	ERING	PRIVAT	ELIMIT	ED	
			FOR PVD		IPES & I	FITTINGS	S AS PER	ASTM F 1	L545 – 97
A		1					<u> </u>		
	Pipes		06 Gr. B Sch	•	200 NB 8	& Sch. 30	for 250 Ni	B & 300 N	В
	Flanges	IS 2062 G	R A / ASTM	A 105					
	Fittings	Ductile Irc	on Casting C	Conforming	To ASTM	1 A 395	T	1	1
	PVDF		ASTM D	3222		Colour	Black	Temp. Limit.	- 20°C to + 120°C
В	DIMENSION	AL STAND	ARDS:						
	Pipes	ANSI B 36	5.10						
	Ductile Iron castings		.42 / ANSI						
	Flanges		5.5 ASA 150						
	Lining		545 Standar						
С	NOMINAL L	INING THI	CKNESS A	S PER MA	NUFACT	URER"S	DESIGN	& TOLER	ANCE:
	Pipes		80 mm; 40 N NB: 5.60 mm					10 mm; 10	0 NB: 5.30
	Fittings	25 NB TO 6.50	80 NB: 4.00	0 mm; 100	NB: 5.00) mm; 150	NB: 5.50	mm; 200	/ 250 NB:
D	INSPN AFTE	R LINING	In-House	TPI		Mech	anical Pr	operties:	
	Hydro Test	At 29 Bar	100%	10%	·			> 200	0
	Spark Test	At 25 KV	100%	10%	Iensil	e Strengtr	n, PSI (mir	n) 300	0
	Dimensions	As per ANS	I B 16.5 / AS	STM F 1545	Elc	ongation,	% (min)	10	
	GENERAL NO All pipes have li to a Lenath of o All fittings are s Suitable vent ho All pipe work w	ap joint flang 6 mtrs max. supplied with oles are prov ill be supplied	fixed cast on ided for all pi d with suitabl	or welded f pes & fitting le wooden er	langes on s. nd covers	ly. to protect			ilable up
	Material test ce			, ,				D :	
F	External Surfac	-	_		ited with d	one coat of	Red Oxide	Primer.	
	Temp. °C	25	40	50	80	100	150	200	250
	20	Full	Full	Full	Full	Full	Full	Full	Full
	93	Full	Full	Full	Full	Full	Full	Full	Full
G	PRESSURE /	TEMPERA	TURE RAT						
	Temperature	DCT	150		~)	DCT		300	
		PSI		Bar (g		PSI			r (g)
	20° C 50° C	25		17.	2		450		31
	100° C		14	17			425 390		
	150° C	23		16 14.	0		390 345		
	200° C	20		14. 13.			295		23.8
		I							
	RIZON		-B, 1650/1618, /205, SUMER KI						

HEAT TRACING METHOD

There are three basic system used in heat tracing plastic lined piping systems: liquid, electrical and steam. Factors that need to be considered in the selection of heat tracing methods include temperature to be maintained, operating, installation, and maintenance costs as well as the temperature handling capabilities of the liner to be used. Additionally, to prevent the potential for localized liner over-heating, it is recommended that liquid, electrical, and steam tracing not be placed directly on pipe and pipe components. It is recommended that insulating cement, wood strips, or other buffer be utilized at installation.

LIQUID TRACING is generally used where there is a need for close control of operating temperatures. The use of heat transfer cement should follow the manufacturer's recommendations. Flanges, Fittings, and other sources of generated heat loss should also be adequately traced.

ELECTRICAL TRACING is available in cable or strip form, both has been used successfully in tracing lined piping systems. Caution must be taken in the design to assure there will be no localized overheating that may lead to liner failure.

All electrical tracing is given a "T-Rating" as described by the National Electrical Code. This rating is the lightest temperature that cable can attain when drawing maximum wattage in an insulated environment. Specifying a "T-Rating" or a self-limiting cable that does not exceed the liner temperature limit is necessary.

When using cable type tracing, place it along the length of the pipe in a "W" wrap configuration. This will allow easier maintenance when necessary. Also, make sure that upon installation, the cable does not overlap causing an area of concentrated heating.

STEAM TRACING should be limited to use with PTFE of PVDF lined piping systems, and consideration must be given to the temperature handling capabilities of the linings. Standoffs, metallic tape wrapping, as well as "W" wrapping are all methods to reduce the possibility of localized overheating.

HORIZON POLYMER ENGINEERING PVT LTD

WORKS :- C1 -B, 1650/1618, GIDC INDL. ESTATE, CHHATRAL, DIST. GANDHINAGAR (N.G) - 382 729 OFFICE :- 204/205, SUMER KENDRA, PANDURANG BHUDHKAR MARG, WORLI, MUMBAI-400 018. INDIA

HORIZON

SUPPORTING OF HORIZON PLASTIC-LINED PIPING PRODUCTS

A contributing factor for leaks in plastic-lined piping is excessive loading at flange connections due to improper piping support. To prevent such loading, Horizon recommends that stress analysis be performed that includes all potential sources of loading on the piping system. The maximum calculated Bending Stress due to Dead Loads should not exceed the Design Allowable Stress.

The Design Allowable Stress, due to pressure, weight and other sustained loading is determined by dividing the Basic Hot Allowable Stress (Sh) for the metal pipe by an appropriate Safety Factor (FS). For example, a value of 10,000 psi is obtained for A106 steel pipe when a Safety Factory of 2 is applied to the Basic Hot Allowable Stress value of 20,000 psi as listed in ASME B 31.3. However, when calculating piping spans using accepted engineering practices, the magnitude of pipe deflection is generally the limiting factor in determining span distance. An industry accepted practices is to limit pipe deflection to no more than $\frac{1}{4}$ of an inch.

Initially, pipe hangers should be positioned such that the piping does not exceed the Design Allowable Stress and the desired pipe deflection. Usually, hangers are located near each flange but not so close as to interfere with the pipe installation. Added support is also recommended where flow changes direction, and in areas of height load concentration, such as clusters of valves or fittings. Additional support and dampening is recommended where vibration can occur.

The reason that we recommend having support at or near the flanges on conventional plasticlined piping is that if the piping is not properly supported, one could over stress the flared or molded PTFE plastic sealing surface and hence cause a leak. Gasket stresses exceeding 5,000 psi for PTFE, 6500 psi for PP and 8,000 psi for PVDF, should be avoided. These are best avoided by support at or near flange, fitting and or valve concentrations located in the pipe run.

Support spans for flanged piping are generally determined from accepted engineering formulas for single pipe spans with free ends.

An important part of supporting plastic lined piping is that the supports should allow the pipe to move freely in response to thermal expansion and contractions. The Manufacturers Standardization Society (MSS) specifications MSS SP 58 and 69 provide good references for supports and hangers for certain applications.

HORIZON POLYMER ENGINEERING PVT LTD

INSTALLATION & MATINTENANCE INSTRUCTIONS FOR FLUOROLINE LINED PIPES & FITTINGS

Installation and maintenance of plastic lined pipe work should be performed by trained personnel only. The following procedures supplement standard piping procedures and practices.

Flange covers should not be removed until flanges are ready to be bolted into position, otherwise sealing faces may become damaged or distorted. If covers are removed for inspection purposes, they must be replaced immediately afterwards. They should also be fitted to any pipe work removed from a system.

Gaskets are not required except where the Fluoroline pipe work is connected to a flange face of another material, such as glass, carbon, ceramic, reinforced plastic etc.

Blot should be tightened using proper bolt torques. The torque values given in the table apply to lined pipes & fittings with class 150 and class 300 flanges.

Threads must be clean and well lubricated and washers should be used to ensure correct torque. Bolts should be tightened alternately and evenly.

If a flange leak occurs and the bolts of the leaking side have been properly torque, they should **not be tightened further otherwise** permanent damage to the sealing face may result. Instead, the bolts on the opposite side should be loosened a half turn at a time, and then the bolts on the leaking side should be tightened by the same amount.

If the leak persists, the bolts should be removed and the sealing faces examined for scratches or dents across and entire face which could produce a leak path. Any scratches or dents not exceeding 10% of the liner thickness may be eliminated by hand polishing with fine abrasive cloth or paper.

If leakage occurs after the system has been cycled to an elevated temperature and back to ambient temperature, bolts should be re-torque after the cool down period. No further tightening would be necessary.

No welding brazing, soldering or flame cutting, which can permanently damage the plastic liner, should be done close to the metal housing, unless adequate precautions are taken to prevent them being exposed to excessive heat.

Safety vent holes should not be plugged with paint, cement, etc. The vent holes are essential to release gases which may be generated at elevated temperatures and trapped between liner and housing. If not vented, these gases may collapse the liner. Vent holes also serve to warn of any accidental damage to liner before leakage reaches dangerous proportions.

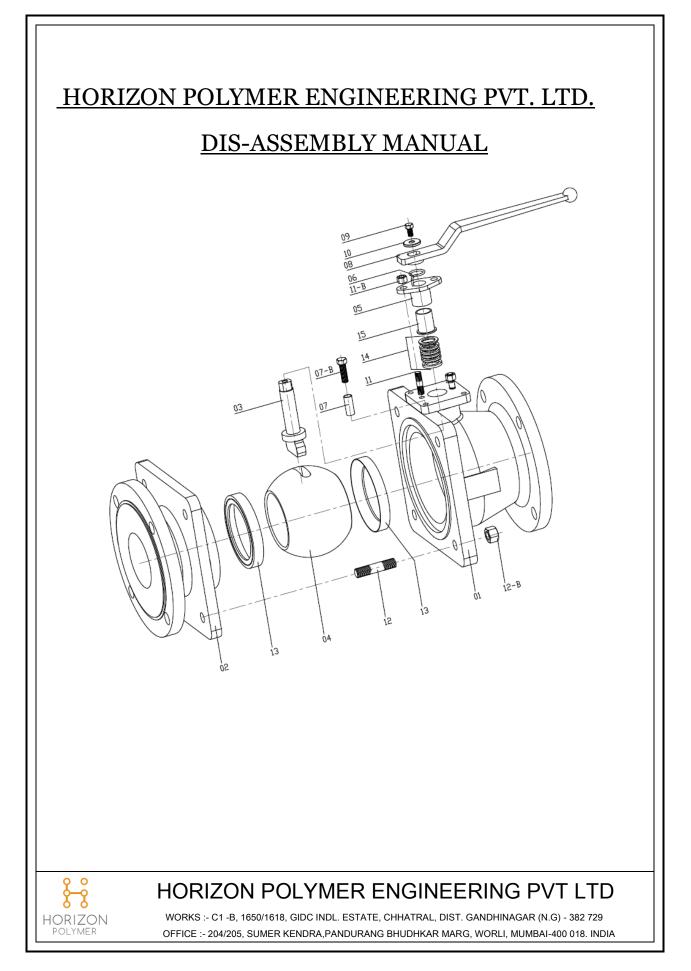
Smooth metal guides, 0.03" to 0.06", may be used to facilitate sliding the sealing faces into position when making final connections or installing individual sections into an existing line.

BOLTS MUST BE LOOSENED WHILE ASYSTEM IS MORE THAN 150 deg C ABOVE AMBIENT TEMPERATURE, OTHERWISE FLARE DISTORTION OR LINER PULL-IN MAY OCCUR.

Storage of the pipe work should be under cover, protected from rain, and placed to avoid risk of flooding.

To secure the sealing faces and protect them from damage while not in use, flange covers or blind flange should be installed immediately on all piping items which are removed from a system

The information contained herein is provided only as a guide from the installation and maintenance of HORIZON products and it does not constitute and express warranty of any kind


HORIZON POLYMER ENGINEERING PVT LTD

SPECIAL FEAUTERS OF LINED BALL VALVES

- HORIZON PFA Lined Ball Valves are robust and created to handle corrosive fluids from -60° C to +200° C
- The Body, Adaptor, Ball and Stem of the Valves are lined as individual components. The Body material is generally cast ductile iron I cast steel and is also available in CF8ICF8M.
- The liner, generally PFA, is locked by dovetail holes which are provided at the time of machining the casting and the lining of the valve components is done on a special purpose injection moulding machine which has a unique built in system with control points to ensure that lining process is controlled. This is important because every component to be lined has to undergo a Heating & Cooling cycle at the time of lining I moulding.
- Our Lined Valves are suitable to operate at full vacuum.
- We do not process I use re-ground or re-processed polymer.
- The Body design minimizes the dead space between the ball, stem and housing.
- The free floating Ball Valve principle makes it possible for the Ball to seal against the downstream seat ring ensuring a positive sealing force even when the line pressure is low.
- Anti Blow-out stem is provided.
- Valves with lockable handle arrangement can be provided on special requests.
- Antistatic device provides protection against a damaging electrostatic discharge.
- The PFA lined Ball can be easily replaced with a Ceramic Ball whereby the life of the valve can be increased if the valve is required to handle other than clear liquid or to work at the bottom of the tank.
- As a standard Horizon will offer only PFA lined Valves as it has a much higher rating for chemical resistance and can be used at higher temperatures well as FEP has its limitations. Secondly, PFA lined Valves and fittings will come in handy when you are required to change your process or make a new product where the process conditions are more severe. The same piping can be used and you can avoid the cost of once against procuring a new set of valves.
- Extremely low torque ensuring bubble tight shut-off facilitates manual quarter turn operation. On the other hand, it is huge saving in cost when selecting actuators for the valves because of low torque values.
- HORIZON valves are equipped with an ISO mounting flange simplifying the mounting of any standard Actuator.
- Safety design features provide protection for the operators and environment,
- The short pattern face to face dimensions allow direct replacement of a fully lined or sleeve Plug Valve with a HORIZON lined Ball Valve without altering the existing pipe work.
- HORIZON is the only company in India who have qualified their Valves to the European Norms under "PED Directive" whereby all valves supplied to European Community will bear the "CE" marking.

HORIZON POLYMER ENGINEERING PVT LTD

Disassembly instructions for Lined Ball valve

When work needs to be carried out on an installed lined valve the works safety requirements and the general installation and maintenance instructions for fluorocarbon resin lined valves must be observed.

Prior to disassembly, the lined valve must be cleared of all fluids according to the above mentioned instructions. Particular care must be taken to ensure that the lined valve is opened and closed repeatedly during the rinsing and draining procedure. This will eliminate all remaining pressure within the lined valve body.

Put body on workbench with a soft cover (rubber mat)

Remove hexagon bolt (09) and lock washers (10)

Open lined valve completely. Remove hand lever (08) from stem

Disassemble grounding device (06)

Remove hexagon nuts (11B)

Disassemble gland follower (05). If necessary, stud bolts (11) can also be removed now.

Remove body bolts (12) and separate side piece (02) from body (01)

Remove first ball seat ring (13)

To remove the ball (04), put hand lever in closed position (90 degree to the longitudinal axis of the lined valve)

The ball (04) can easily be pushed out of the body.

Remove hand lever (08)

Remove stem (03) by pushing it down through the body. Care must be taken not to damage the liner.

Remove second ball seat ring (13)

Chevron packing (14) can easily be removed

HORIZON POLYMER ENGINEERING PVT LTD

Assembly instructions for Lined Ball valve

The general installation and maintenance instructions must be observed.

Screw stud bolts (11) into body (01)

Insert stem (03) from inside of the body in such a way that the flat side is parallel to body longitudinal axis.

Insert chevron packing (14)

Install gland follower (5) and hexagon nuts (11B)

Install grounding device (06) and hand lever (08) onto stem (03) and tighten it by using lock washer (10) and hexagon bolts (09)

Insert first ball seat ring (13) into body (01)

Insert ball (04) to lined valve stem (03) by pushing the ball in a downward motion through lined valve body (01)

Insert second ball seat ring (13) into side piece (02)

Turn hand lever 90 degree off longitudinal axis of the body.

Install side piece (02) on to body (01) making sure that recess for stem (03) is on the correct side.

Install body bolts (12) and hexagon nuts (12B) and tighten by criss - cross method.

Bolts to be further tightened at the time when valve is being hydrostatically tested till no leakage or drop in pressure is noticed. Over tighting of bolts may result in higher operating torque leading to lining getting damaged in ball and /or stem. Operating torque should be within specified limits

HORIZON POLYMER ENGINEERING PVT LTD

IMPORTANT NOTE

Prior to installing the valves in service all valves repaired/serviced and re- assembled should be tested both for body and seat as per procedure given in API 598.

HORIZON POLYMER ENGINEERING PVT LTD

Disassembly instructions for Lined Ball valve.ANSI FP.

When work needs to be carried out on an installed lined valve the works safety requirements and the general installation and maintenance instructions for fluorocarbon resin lined valves must be observed.

Prior to disassembly, the lined valve must be cleared of all fluids according to the above mentioned instructions. Particular care must be taken to ensure that the lined valve is opened and closed repeatedly during the rinsing and draining procedure. This will eliminate all remaining pressure within the lined valve body.

Put body on workbench with a soft cover (rubber mat)

Remove hexagon bolt (16) and lock washers (15)

Open lined valve completely. Remove hand lever (09) from stem

Disassemble grounding device (14) Remove allen bolt (17)

Disassemble gland flange (11). Remove Bellevellie-spring set (08) and Gland-Bush (05).

Remove body bolts (10) and separate side piece (02) from body (01)

Remove first ball seat ring (06)

To remove the ball (04), put hand lever in closed position (90 degree to the longitudinal axis of the lined valve)

The ball (04) can easily be pushed out of the body.

Remove hand lever (09)

Remove stem (03) by pushing it down through the body. Care must be taken not to damage the liner.

Remove second ball seat ring (06)

Chevron packing (07) can easily be removed

HORIZON POLYMER ENGINEERING PVT LTD

Assembly instructions for Lined Ball valve

The general installation and maintenance instructions must be observed.

Insert stem (03) from inside of the body in such a way that the flat side is parallel to body longitudinal axis.

Insert chevron packing (14). Insert Gland-Bush (PTFE Graphite + SS 304).(05).

Insert Belleville spring set (08). Install gland flange (11) and Allen-Bolts.(17)

Install grounding device (14) and hand lever (09) onto stem (03) and tighten it by using lock washer (15) and hexagon bolts (16)

Insert first ball seat ring (06) into body (01)

Insert ball (04) to lined valve stem (03) by pushing the ball in a downward motion through lined valve body (01)

Insert second ball seat ring (13) into side piece (02)

Turn hand lever 90 degree off longitudinal axis of the body.

Install side piece (02) on to body (01) making sure that recess for stem (03) is on the correct side.

Install body bolts (10) and hexagon nuts (10B) and tighten by criss - cross method.

Bolts to be further tightened at the time when valve is being hydrostatically tested till no leakage or drop in pressure is noticed. Over tighting of bolts may result in higher operating torque leading to lining getting damaged in ball and /or stem. Operating torque should be within specified limits

HORIZON POLYMER ENGINEERING PVT LTD

IMPORTANT NOTE

Prior to installing the valves in service all valves repaired/serviced and re- assembled should be tested both for body and seat as per procedure given in API 598.

HORIZON POLYMER ENGINEERING PVT LTD

Disassembly instructions for Lined Ball – Check valve.

When work needs to be carried out on an installed lined Ball-Check valve the works safety requirements and the general installation and maintenance instructions for fluorocarbon resin lined valves must be observed.

Prior to disassembly, the lined Ball-Check valve must be cleared of all fluids according to the above mentioned instructions. Particular care must be taken to ensure that the lined valve is opened and closed repeatedly during the rinsing and draining procedure. This will eliminate all remaining pressure within the lined valve body.

Put body on workbench with a soft cover (rubber mat)

Remove hexagon bolt and lock washers

Open lined Ball-Check valve completely.

Remove body bolts and separate side piece from body.

Remove first PTFE Ball.

The ball (04) can easily be pushed out of the body.

HORIZON POLYMER ENGINEERING PVT LTD

Assembly instructions for Lined Ball –Check valve.

The general installation and maintenance instructions must be observed.

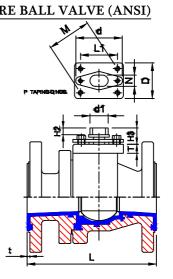
Insert PTFE BALL to lined valve Body by pushing the ball in a downward motion through lined valve body.

Install Side piece on to Body.

Install body bolts and hexagon nuts and tighten by criss - cross method .

Bolts to be further tightened at the time when valve is being hydrostatically tested till no leakage or drop in pressure is noticed.

Avoid any damage to occur on lining assembly & testing.


IMPORTANT NOTE

Prior to installing the valves in service all valves repaired/serviced and re- assembled should be tested both for body and seat as per procedure given in API 598

HORIZON POLYMER ENGINEERING PVT LTD

ANSI B16.10/ANSI B16.5 150 LBS. SIZE 25 -150 NB TECHNICAL DATA SHEET - STANDARD BORE BALL VALVE (ANSI) R 09 10 03 11 05 02

ACTUATOR MOUNTING DETAILS :-

12

SIZE														TORQUE RATING				
-	F	d1	D	H2	H3	L	L1	М	N	P	Q	Т	X	SIZE	0 psi	р	150 ps	i p⊧
NB														NB	In. Lbs.	NM.	In. Lbs.	NM.
25 1"	51	10	53	12	22	127	35	50	8	M8	4	10	74	25 1 "	50	5.5	50	5.5
40 11/2	73	10	53	12	22	165	35	50	8	M8	4	12	78	40 11/2"	125	14	170	19
50 2"	92	16	68	12	32	178	49.5	70	12	М8	4	12	105	50 2 "	135	15	170	19
80 3"	122	16	68	12	32	203	49.5	70	12	М8	4	15	117	80 3"	325	37	570	64
100 4"	157	22	92	17	42	229	72	102	16	м10	4	15	172	100 4"	663	75	814	92
150 6"	206	22	98	17	42	267	72	102	16	м10	4	15	190	150 6"	1080	122	1795	203
	DT.	-	eto)			TRATES A		scont			-		ST 184	E 10.				

Т

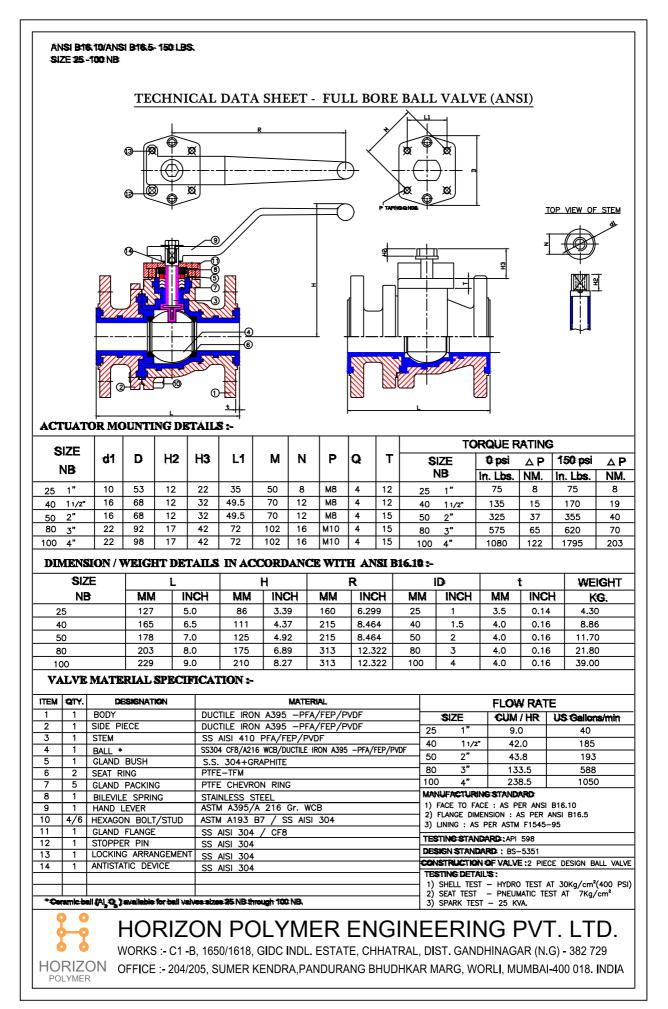
DIMENSION / WEIGHT DETAILS IN ACCORDANCE WITH ANSI B16.10:

13

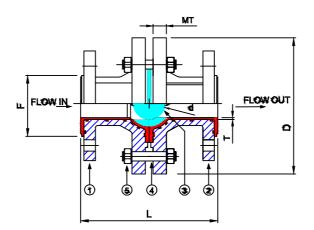
												FLG	DIM AS	PER AN	SI B16 .	5 ASA 150	LBS
SIZE			L		н	1	R		,D	t (linin	ng thk.)	OD	PCD	HOLEØ	THK.	WEIGHT	
NB		MM	INCH	MM	INCH	MM	INCH	MM	INCH	MM	INCH	MM	MM	MM	MM	KG.	
25 *	1"	127	5.0	115	4.53	160	6.30	20	0.79	3.5	0.14	108.0	79.2	16 X 4	11.17	4.900	
40	11"	165	6.5	120	4.71	160	6.30	25	0.98	3.5	0.14	127.0	98.6	16 X 4	14.22	7.400	
50	2"	178	7.0	155	6.11	215	8.47	40	1.58	4.0	0.16	152.4	120.7	19 X 4	15.70	11.240	
80	3"	203	8.0	168	6.62	215	8.47	50	1.97	4.0	0.16	190.5	152.4	19 X 4	19.00	16.340	
100	4"	229	9.0	205	8.07	313	12.32	80	3.15	4.0	0.16	228.6	190.5	19 X 8	23.80	30.780	
150	6"	267	10.50	230	9.06	313	12.32	100	4.0	4.0	0.16	279.4	241.3	22 X 8	25.40	52.000	
*	IN	15NB \	VALVES L	ENGTH	WILL BE	INCR	EASED B	Ý 40r	nm.(15	NOS)							

VALVE MATERIAL SECTEMATION

ITEM	QTY.	DESIGNATION	MATERIAL		FLOW RAT	ΓE
\$ 1	1	BODY	DUCTILE IRON ASSEGRAG-40-18/A218 GR.WCB(for 25NB)-PFA LINED	SIZE	CUM/HR	US Gallens/min
82	1	SIDE PIECE	DUCTILE IRON A395-GR.80-40-18/A218-GR.WCB(for 25NB)-PFA LINED	25 1"	5.4	24
8	1	STEM	SS AISI 410-PFA LINED			
104	1	BALL*	DUCTILE IRON A395 GR.60-40-18/361 GR.CF&PFA LINED			40
05	1	GLAND FOLLOWER	SS ASTM A 351 CF 8	50 2"	42.0	185
20	1	SROUNDING DEVICE	SS AISI 31E	80 3"	43.8	193
07	-	STOPPER	SS AISI 304	100 4"	133.5	588
08	-	HANDLEVER	ASTM A395 GR.60-40-18/A218 GR.WCB	150 6"	238.5	1050
09	*	HEXAGON BOLT	ASTM A193 BE/SSAISI 304	MANUFACTUR	NGISTANDARD	
	-				CE : AS PER ANS	
10	1	PLAIN WASHER	ASTM A193 BE/SS AISI 304		ENSION : AS PER	
11	2	STUD BOLT	ASTM A193 B&/SS AISI 304	3) LINING : AS	PER ASTM F1545	-95
12	4/6	HEXAGON BOLT/STUD	ASTM A193 BZ / SS AISI 304	TESTING STAN	DARD: API 598	
13	2	SEAT RING	PTFE (VIRGIN)	DESIGN STAND	ARD : BS-5351	
14	5	PACKING	CHEVRON PTFE	CONSTRUCTIO	NOF VALVE :2 PIE	CE DESIGN BALL VALV
15	1	GLAND BUSH	PTFE GRAPHITE	TESTING DETA		
*Ce	emic b	all (A), Q) available for be	II valves sizes 25 NB through 150 NB.		- PNEUMATIC TES	AT 30Kg/cm²(400 PS ST AT 7Kg/cm²



Q


WORKS :- C1 -B, 1650/1618, GIDC INDL. ESTATE, CHHATRAL, DIST. GANDHINAGAR (N.G) - 382 729

OFFICE :- 204/205, SUMER KENDRA, PANDURANG BHUDHKAR MARG, WORLI, MUMBAI-400 018. INDIA

			<u>TE</u>	CHN	JICAI	DAT.	A SHI	EET	- FU	LL B	BORI	E BA		VALV			P VIEW OF	STEM
		09 10 08 03 05 02						-06 -15 -14 -01 -13	•	H						z ÷		H
ACI	'UAT	`OR M (12 S ==		—04			t		ľ					
						.								то		RATING	;	
	IZE	d1	D	H2	H3	L1	М	N	P	Q	т		SI	ZE	0 psi	ΔP	150 psi	ΔP
	NB												Ň	B	In. Lbs.	NM.	In. Lbs.	NM
25	1"	10	53	12	22	35	50	8	М8	4	12	2	25	1"	125	14	170	19
40	1 1/2"		68	12	32	49.5	70	12	M8	4	12	4	40	1 1/2"	135	15	170	22
50	2"	16	68	12	32	49.5	70	12	M8	4	15		50	2"	325	37	570	48
30 1 0 0	<u>3"</u> 4"	22	92 98	17 17	42	72	102	16 16	M10	4	15	-	30	<u>3"</u> 4"	663 1080	65 122	814 1795	70 203
	-									1	<u> </u>	· ·	00 21	4	1000	122	1795	203
~~~	SIZ													<u> </u>	1	4		
	- SIZ NE				NOU		H	<u></u>	* # * #	R	~	8.48				t INO		IGHT
		• 1"	160		INCH 6.299	120	4.7		<b>MM</b> 160	6.2		25	-	INCH	<b>MM</b> 3.5	0.14	1	<b>G.</b> 20
2 4		1 1/2"	200		6.299 7.874	145	4.7		215	8.4		40	-	1.5	4.0	0.14		
- +	-	2"	230		9.055	160	6.2		215	8.4		50		2	4.0	0.16		
8	-	3"	310		12.204	205	8.0		313	_	322	80	-	3	4.0	0.16		
10		4"	350		13.779	220	8.6	61	313	-	322	10	0	4	4.0	0.16	51.	50
VA	LVE	MÁTI	RIAL	SPEC	IFICA	FION :-												
TEM	QTY.	DES	IGNATIO	N				MATER	IAL.								_	
ÛÎ	1	BODY				IRON A39									FLOI	A RATI		
02 03	1 1	SIDE PI STEM	ece			IRON A39			VDF					SIZE	CUM	/HR	US Gallen	s/min
84	Ť	BALL*				₩ */A216₩			N A395-	PFA/F	EP/PV	DF	25	1"	9.	0	40	
05	1		Follow			A351 CF	\$						40	11/2		2.0	185	
36 67	1 1		DING DE		SS AISI 3 SS AISI 3								50 80	2" 3"		3.8	193	
07 	1	STOPPI HANDL				44 15/A 216 6	r. WCB						100			3.5 8.5	<u>588</u> 105	
38	Ť	1.1.1	ON BOLT			<b>13 88/35</b>												
06 09	Ť		VASHER			93 B&/SS									ACE : AS P		B16.10	
	2	STUDB	-			93 B& / \$\$							2) F	LANGE DI	MENSION :	AS PER A	NSI B16.5	
<b>09</b> 10 11	4/6			STUD		13 B7 / SS.	aisi 304								S PER ASTN		90	
09 10 11 12	25	SEAT R			PTFE-TF										DARD : API			
<b>09</b> 10 11		GLAND	BUSH		PTFE GR	APHITE						_					E DESIGN B	ALL VALV
09 10 11 12 13 14 15	1		aldelieve 1	for bell	/alves size	is 25 NB th	rough 100	DINB.					1) :		ST - HYDRO		T 30Kg/cm²	
099 110 111 112 113 114 115		all (Al ₂ O ₂ )										1			— PNEUI ST — 25 К		STAT 7Kg∕	′cm*

#### TECHNICAL DATA SHEET - LINED BALL CHECK VALVE



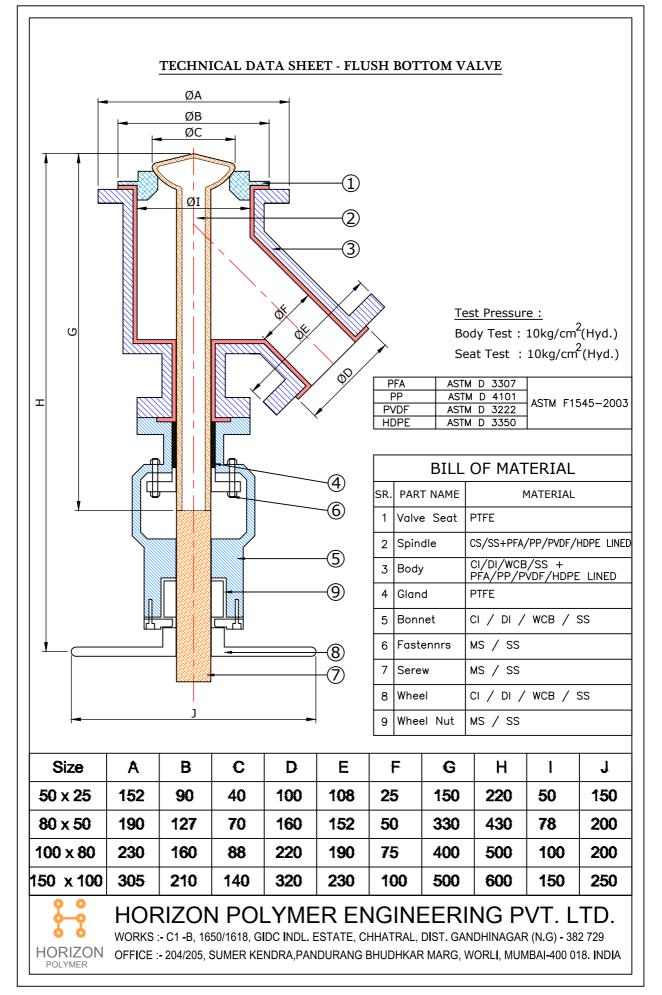
#### DIMENSION / WEIGHT DETAILS IN ACCORDANCE WITH ANSI B16.10:

SIZ	ц		-1				<b>D</b>		LINING THK.	MID.FLG. THK.	1 °		AS PER		WEIGHT	
		-	6	L			D	F	Т	MT	OD	PCD	HOLEØ	THK.	##LIG[[]	
NB	•	MM	INCH	MM	INCH	MM	INCH	MM	MM	MM	MM	MM	MM	MM	KG.	
25	1"	30	1.181	152	6.0	140	5.512	51	3.5	12	108.0	79.2	16 X 4	11.17	5.00	
40	1 ½"	50	1.969	178	7.0	165	6.496	72	3.5	15	127.0	98.6	16 X 4	14.22	8.35	
50	2"	60	2.362	203	8.0	185	7.283	92	3.5	15	152.4	120.7	19 X 4	15.70	11.40	
80	3"	100	3.973	241	9.5	250	9.843	127	4.0	17	190.5	152.4	19 X 4	19.00	22.00	
100	4"	125	4.921	292	11.5	285	11.220	157	4.0	19	228.6	190.5	19 X 8	23.80	38.00	
150	6"	180	7.087	356	14.0	395	15.551	206	4.0	22	279.4	141.3	22 X 8	25.40	70.00	

#### VALVE MATERIAL SPECIFICATION :-

ITEM	QTY.	DESIGNATION	MATERIAL
01	1	BODY PIECE	DUCTILE IRON A395 GR.60-40-18/A-216 GR.WCB, PFA LINED
02	1	SIDE PIECE	DUCTILE IRON A395 GR.60-40-18/A-216 GR.WCB, PFA LINED
03	1	BALL	PTFE AND FLOATING IN CONTRUCTION
04	1	STUD BOLTS	ASTM A193 B7 / SS AISI 304
05	1	HEXAGONAL NUT	ASTM A193 B7 / SS AISI 304

#### TEST (After Lining & Assembly):-


BODY HYDRO TEST	30 Kg/cm ² (400 PSI)
SEAT AIR TEST	7KGS/CM SQUARE
SPARK TEST	<b>35</b> KV

#### MANUFACTURING STANDARD

1) FACE TO FACE : AS PER ANSI B16.10
2) FLANGE DIMENSION : AS PER ANSI B16.5
3) LINING : AS PER ASTM F1545-95
TESTING STANDARD: API 598
DESIGN STANDARD : BS-5351
CONSTRUCTION OF VALVE: 2 PIECE DESIGN BALL VALVE
DETAIL OF SEAT : AS LINED ITSELF



### HORIZON POLYMER ENGINEERING PVT. LTD.

